LadyBug Technologies LLC

Programming Guide
LBSF Series True-RMS

Power Sensors

LadyBug Technologies LLC

1/10/2025

This document is a reference programming guide for the True-RMS versions of the LBSFxx series’ USB, LAN,
SPI, 12C interfaced power sensors.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

What is Covered in this Manual

This manual serves as a programming and command reference for LBSFxxx power sensors. It is intended to assist
in the development of automated testing systems or for users making measurements within various testing
environments. Additional information is included to support full command functionality.

Please refer to the PMA-12 documentation for information on our power measurement software for general
purposes.

e Theory of operation

e Specific command format and details

e Measurement examples

e General information about the SCPI command language

e Command utilization for optional sensor features

e Command information regarding the sensor’s interface and interface options

e Integration with MATLAB, Keysight and National Instruments applications and libraries

Where to find additional information

- LadyBug Website

- Specific sensors data sheet

- Option SPI Guide for SF series products (covers SPI and 12C) (available 6/25)
- Option 001 Analog recorder out guide for SF series products (available 6/25)
- LadyBug LAN programming guide (available 6/25)

- LadyBug LAN getting started guide(available 6/25)

- LadyBug sales or Technical support

- PMA-12 software guide

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1

3

Contents
L T=Ted 8 oYl O o T=T =1 o T s TSP 11
INTroduCtion 0 the SCPI LANGUAEEeeiiiiiieeeeciiee ettt ettt e e e cte e e ettt e e e e st ae e e e s bt ee e eeastaeeeeasaeeeansbeeeeennseeeeennseneeannrenas 12
AOWADIE CRGIACTELS: ...ttt ettt b e s he e st s bt et e s bt e s heesaee st e e bt e beenbeesbeesnteennean 12
COMMONG SETUCEUIE: ...ttt ettt ettt et s e e bt e e s bt e e s ateesab e e s abeeesabeesabeeeanbeesabeeesnbeesaseesaseeesareeanns 12
COMMEANG ..ttt ettt e ettt e st e ettt e s a b e e s beeesabeesabe e e bt e e sabee e beeesabeesabeeesabeesabeeeneeesabeeennbeesnseesaneeesaneeanns 12
PAr@MELEIS ..eeiieiiiii it e ra s 12
COMMAND CONVENTIONS ...ttt se ettt e s bt e s aeesae e st e e bt e b e e s beesaeeeateeabeebeesbeesaeesanesaneenneennes 13
BasSiC POWET IMEASUIEMIENTSeiiiiiiiiiiiiiiie ettt e e s e e e s bb e e e s sb e e e s snbe e e s snraees 14
DEfAUIT CONDITION vttt ettt ettt e st e s bt e s bt e s bt e e s ateesabeeesabeesabeesabeeesabeesabeeesnseesaranenanes 14
Y T 0 T=Y o A A L (=T ={ [T OO PP PPPPRPPTTPPP 15
M EASUIEMENT EXAMPIES .. uviiiiiiiiee ittt cetee ettt e sttt e e e et re e e e sbte e e e sabeeeeesbteeesabeeeesssseeeassseaeesassaeessnsseeessnseneessnnes 16
Free RUN MOde (INIT:CONTEL) ...uiiiiiiiie ettt et e e et e e e e ate e e e eeabee e e esataeeeeanbaeeeensseeeeeanseeeeeanseneeennsenns 16
Single Initiation Mode (INIT:CONT=0)uuiiiiiiiiie ettt e e et e et e e e et e e e e eate e e e e ataeeeesnsaeeeesssaeeesansaneesanssneenan 17
INtErface INFOMMATION . .eieiie ittt e b e s bt st st st et e b e e s bt e s bt e saeeeateebeenbeesaeesanenas 18
LBSFXX Programming REFEIENCE.......uviii ittt e st e e st e e e st e e e e s sbeeeesnbeeeesnreeessnreeas 19
MEASUIrEMENT COMM@NDSeeitiiiiiieiiie ettt ettt ettt ettt e sttt e sttt e sabeeebeeesabee s bteesaseesabeeesabeesabeesnseeesabeesabeeenseeesaseeennes 20
CONFIGUIE[L]? ettt ettt et sttt b e bt s b et s et e s et e et e e bt e s bt e s et e s an e sateean e e s e e beesmeesmeeemreenneen 21
CONFigure[1] or CONFigure[1][:SCALAr][:POWEI:AC]......ccccieee ettt eecitee e e ecttee e e ecttee e e e ette e e e etre e e e esataeeesntaeaeennes 23
FETCh[1]20r FETCh[1][:SCALAIrI[:POWEIIAC]? . cceiiiiiiicteeeeee ettt e e ettt e e e e e s eesbabee e e seessesbasereeesssesnssrenes 24
MEASure[1]? or MEASUre[1] [:SCALAr][:POWEIAC]? ...uueeeeiiieeeteeeeeee ettt e e et ee e e e e e seaaraee e e e s e e ssnranes 26
READ[1]? or READ[[1] [:SCALAr][:POWEI:AC]?eeiieiieeieeeetereesiee st sttt ettt et s s eaee s 27
CalCUlate COMMANGS ...coveiieiiiee ettt st et e b et s e st st e bt e bt e s b e e sheesaeeear e e b e e sbeesanesanesaneeneennes 29
CALC:FEED[?] or CALCUIAte[1]:FEED[?] couveeoiieiieeeeeteete ettt ettt 30
CALC:MATH[?]or CALCulate[1]:MATH:EXPRESSION[P]..ccccuereeiiieiiiiiiieieieee e e ettt ee e e eeeevrae e e e e e seeaabenereeeseeenns 30
CALC:MATH:CAT? or CALCulate:MATH:EXPResSiON:CATAlOZ?........ccuiiiieeee ettt et e e envrnee e e e 30
CALC:LIM:CLEar:AUTO[?] or CALCulate[1]:LIMit:CLEQr:AUTO{?} c.eeeeeeeieeee ettt e e 31
CALC:LIM:CLE[?] or CALCulate[1]:LIMit:CLEQr[:IMMediate][?].....cccccerreereerienieriere et 35
CALC:LIM:FAIL? or CALCUIAte[L]:LIMITIFAIL? c..eieiiiieeeeeee ettt s e 36
CALC:LIM:FCO? or CALCUIAtE[1]:LIMITIFCOUNT? .eeveiiiieeeeeeeee ettt e e e e e e a e e e s e s eensabeneeeeeeeenns 37
CALC:LIM:LOW[?] or :CALCUlate[1]:LIMit:LOWEI[:DATA][?] v eeeeeeeeeeeeeeeeeeeseeeseeeeeeseseseseseseseeseseseseseseeeesseseees 38

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1

4
CALC:LIM:STAT[?] OF CALCUIGtE[L]:LIMIt:STATEL?] vvrvreereereeseeseeseeseeseeseeseesesssessessessesssssessessessessessessassessenaees 39
CALC:LIM:UPP[?] or CALCUIate[1]:LIMit:UPPEI:iDATAL?] srvueeeeeeeeeereseeseeseeseeeesesseesessessssessessessessessessessessssaees 40

(67 111 o T =Y i o 1o E T T T TP PSTOTOOTOPRPI 41
CAL:ZERO:AUTO or CALibration1:ZERO:AUTO ...ccccueiiiiiiiiiieeiieeeieeesteesieessieeesreesveeeseeeesssaesssseesssessnseessnsessnns 42
CAL:ZERO:TYPE or CALIbrationL:ZERO:TYPEoooiciiiiiiieiiie et eiee et ste e sieeesteesbteesaaeesbaessaseesasessnsnessnsessnns 43
(07 oY 0 Y] o Tr= Y oY 1 3 Y RO 44

0T 4 - | PP PPPTPP 45
FORMAt[:READINGS]:BORDENuuviiiieieeeiiicitieeee e e e e eicittreeeeeeeeesetaraeeeeeeeesastsasesaaesessasstasseeaeesssasssssssseeesessnnssnes 46
FORMAE[:READINGSIIDATA] - eeee e e e eeseeeeeeseeeesseseeseasseesssseessssssesssessesseessesseseeseeseeseaeeesesseseeseeesesseseens 47

T A= =TSPTSRO PP PP PTOPPRPOR 48
INITIQEEICONTINUOUS ...eeiiiiiiii ettt sttt e s st e s s e e e s s e e e s s emb et e s s b e e e s s enbeeessanbeeessnnrenas 49
INITIQEELICONTINUOUS .eeeiietiiei ittt ettt ettt e s s e e s s e e e s s b e e e s s b e e e s smb e e e s s smbeeessanbeeesennenes 49
INITIQtEICONTINUOUSIALL eeeeiiiiiiiiitieee e e ettt e e e e e ettt et e e e s e s s iabareeeeeesssssabeaaeeeesssassssseeaeeaessssnsssaaeeesssnsansenes 49
INITIQtEL:CONTINUOUSIALL ettt ettt ettt e e e e e sttt e e e e e s s ssaabtbaeeeesssasassbaeaeeeesssanssraaaeeessnsannsenes 49
INITIate:CONTINUOUS:SEQUENCEccuiieieiiiitie e eeee ettt ettt e ettt e e ettt e e et e e s st e e s s sabeee s sanreeesesaneeesesanenesennnenas 49
INITiatel:CONTINUOUS:SEQUENCE.eviiiiiiiii ittt ettt st e s s e e s e e e s s sre e e s e areees 49
INITiate:CONTINUOUS:SEQUENCEL.......oeiiiiiiiiiiiiiie ettt re e s e s s sre e e s s areees 49
INITiatel:CONTINUOUS:SEQUENCEL.......ooiiiiiiiiiiiiiiiiiicitt e s saa e s 49
INITIGte[:IMMEAIGLE]/NGUETY/ .ottt ettt ettt ettt et e e s te e s ta e eabeebeesbeesbaesabesabesabeenbeessaesssesaseeaseenses 52
INITIAteL[:IMMEAIAtE]/NQUEIY/ «eeenreetee ettt ettt ettt ettt e st e s ta e s b e e be e beesbaesabeeabesabeenbeestaesssesaseeaseenses 52
INITIate [IMMEAIAtE]:ALL/NGUEIY/ .ottt ettt ettt et e et e e et e e et e e sateeeteeesabeeeteeesareeebeeenanes 52
INITiatel[:IMMEIate]:ALL/NQUEIY/ ..ottt ettt et et e e ae e et e e et e e e ateeeeteeesabeeeteeesareeebeeenanas 52
INITiate[:IMMediate]:SEQUENCE/NOUEIY/ ...oooeeeeeeeeeeeeee et ettt ettt e ae e et e e ette e e teeeeteeesabeeeteeesteeeenbeeenanas 52
INITiate1[:IMMediate]:SEQUENCE/NQUEIY/ ...cveeireeeieeciee ettt eeteesee e teebeesteesteesteesaaeetbeeabeebeesbaesseesanesaseenses 52
INITiate[:IMMediate]:SEQUENCEL/NQUEIY/ ...cveeireeeieeeieere ettt esteestteeteeveesteesteestaestaesabeeabeebeesbaesseesasesaseensens 52
INITiatel[:IMMediate]:SEQUENCEL/NGUEIY/eeireeeieeeie ettt e eteeeveebeeeteesteestaestaeeabeebeebeesbaesseesasesaseenses 52

[] o101 S PP PPPPPPPPIRN 54
LN L (=T o 1 V] 24T F= Y ol U UERPRNS 54

1Y/ =10 o Lo] oV PP PPPPRRPPIRN 55
MEMOTY:CATAIOZ:STATEP/GONIY/ oottt ettt ettt s e et e beeebeesteestaesabeeabeeabeenbeebaesasesaseenseensens 56
MEMOTY:CATAIOZ: TABLE?/GONIY/ c..veieeeeeee ettt ettt ettt et e e re e beesteestaesabeeabeeabeenbeetaesasesaseenseenres 57

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1

5
MEMOTY:CATAIOZ:ALL]?/QONIY/ oottt ettt ettt e te e te e s ta e s aa e s abesabeente e baesbsesabeeareenrann 58
MEMOTY:CLEQNTABLE/NOUETY/ «.veiteeetee ettt et et e st esteste s te e te e beestaessaesabeeteetaastaasasesasesaseenteesseesssesssesnsennsees 59
MEMOTY:CLEQI[:NAME]/NOQUEIY/ ettt ettt s e te e te e te e te e s te e s taesabeebe e teestaesaaesabesabeenteenbaesssesssesnsesnses 60
MEMOIY:FREE:STATE?/UONIY/ ..ottt et et e e et e et e e e abe e s abeeebaeesabeeeseeesareeenbeeennras 61
MEMOIY:FREE:TABLE?/QONIY/ ..ottt ettt ettt et e et e e et e e s be e e e abeesabeeebaeesabeeeseeessreesnbeeennnas 62
MEMOIY:FREE[ZALL]?/GONIY/ oottt ettt ettt e et e e st e e eabe e s abeeebaaesabeeetaeesnseeebeeennras 63
MEMOTY:INSTAEES?/GONIY/ .ottt ettt ettt e st e e te et e et e e s be e s bbesabeebe e taastaesasesabesabeenteesaesseessaesasenarenn 64
MEMOTY:STATE:CATAIOZ?/GONIY/ .ottt et e s e b e e te e te e sbeesaaesabesabeenteebaesssesssesasesnsens 65
IMEEM OTY i STATEIDEFING. ...eeieeiee ittt ettt e e e e e s s b et e e e e s s e s aabebteeeeessasssbaeaeeeeessanssraaeeeessasannsnnes 66
Y Y o T R A = = o 2 (O [0 T=] o oyt 67
MEMory:TABLe:FREQUENCY:POINES?/QONIY/ ..oeoieeieetee ettt ettt ettt e e eanas 69
MEMOry:TABLE:GAIN:IMAGNITUAE]....eiii i ettt ettt e et e e etee e e e ete e e e e etee e e e sabee e e seabaeeeennbaeeeeenseneeennsenns 70
MEMOry:TABLE:GAIN[:MAGNItUAE]:POINES?/GONIY/ vvrreeereereeeeeseeseeeeeeeeeeeseeseeseeseeseseeseeseseseesesseseeseeesessesenns 72
MEMOTY:TABLE:IMOVE/NQUEIY/ «eeenveeteectee et et et e et e stteeveeeteeteestaestaestaesabeebeestaestaesasesasesabeenteensaesssesasesnsesnses 73
Y Y o VA AN = WY = K=ot PPNt 74
L T o1 U N 75
OUTPULIRECOIAEIIFEED ...cuteiitiiiiteiieeteetee ettt ettt b e st sttt et esbe e s bt e saee st e sabe et e e be e bt e sbeesmeesaeeenrean 76
OUTPULIRECOIEILIFEED ...cccuuiiiiiieiiie ettt ettt et sttt e e st e et e e sabeesabaeesabeesabbesasbeesabaeesaseesnsaesseeesaseennns 76
OUTP UL RECOIEIFILTEI ..eiiitieeieeeite ettt ettt et st e et e e e bt e e bt e e sabeesabaeesabeesabtesnsbeesabaeesaseesaseesnseeesaseesnns 77
OUTP UL RECOITEILIFILTEN ceeueiieiieeite ettt ettt et e sttt e st e st e ettt e sbeessabeesabeesabaeesabeesabaesssteesabaeesaseesaseesseeesaseennns 77
OUTPUL:RECOIdEr:LIMItILOWET ...ccuieieiiieiieeeeitee sttt sttt ettt s e e st e st e s ame e e s s e s sneeesmbeesnenesaneesane 81
OUTPUL:RECOIrErL:LIMITILOWET ...eveieiiieeiee ettt ettt e e st s s sme e e sareesnneeesmreesamenesaneeenne 81
OUTPUL:RECOIEr:LIMItIUPPEI .. .cciiiieitie ettt ettt sttt s eme e e s b e s smn e e smreesmeeesaneeeane 81
OUTPUL:RECOIrErL:LIMItIUPPET ...ttt ettt ettt ettt et e e st e sbt e s sabeesabaeesabeesabeessbeesabeeanns 81
OUT P UL RE O STATE ..ttt ettt ettt ettt esabe e ste e ettt e s be e e abeesabeesabaeesabeesabtesasseesabaeensseesasaesnseeesaseennns 84
OUTP UL RECOIEIL:STATE . utieeieeeite et ette et e ettt e sb e e sbe e s bte e s bt e s bbeesabeesabaeesabeesabtesasteesabaeesaseesaseesnseeesaseesnns 84
(OO I Uy I [= =T] 10 o N 85
OUT PUL TRIGEEI i STATE] ..ttt ettt ettt e ettt e e e ettt e e e ebaeeeeebteeaessseeaeesssaaesassasaeassaeassssaeasaassseasaasseeananses 87
Y=] PRSP 88
Averaging ComMmMANAS OVEIVIEWc.uuveiiiiiieeeeiiteee ettt e esiteesesttee e e baeeeesaaseeeeassaeeeasssaeessssaesesnssaeesessseeessnsens 89
[SENSE]:AVERQZEICOUNT. .. .ceiiiiieiiee ittt ettt e stee ettt site e st e e sabee s bt eesabeesabeeesabeesabaeesbeesabaeesabeesasaessseesabaesnsees 92

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1

6
SENSEL:AVERAGEICOUNI ... s snnnnnnnen 92
[SENSE]:AVERQZE:COUNLIAUTO ..eiiiiiiieieiiee e ecitee e sttt e e et e e st e e ettt e e s assteeesssstaeeesnsbeeessasteeessnseeesanssenessnnsenns 94
SENSE1:AVERQGE:ICOUNTIAUTO. ... nenen 94
[SENSE]:AVERGZE:SDETECE. ..ccccutiieieiiiee ettt e ee ettt e e et te e e et e e e e stae e e e s abbeeesaabeaeeeasstaeeeasssaeeeasseeseensseeeeanssesesannsenas 96
SENSE LI AVERQGE:SDETECE ...ttt a s aaesassseseabsbaassnssannnennes 96
[SENSE]:AVERAZE[:STATE] ...eeutiitieteiteeitete sttt ettt ettt ettt sa et bt et e s b e eht e be s bt e st e bt eae et e sbe et e sbesbeebesbeentenbesaeenes 98
) S NN R N Y=Y R YA I PPN 98
[SENSE]:BUFFEIICOUNL ...eviiiiiiieie e eciiee ettt e ettt e sttt e st e e s eatee e e s sabee e e sssbeeeesaabeeeeessbeeesensseeesennseaessnsseeesssnsens 100
SENSEL:BUFFEIICOUNT ... s ssssssssssnsnnnnas 100
[SENSE]:CORRECHION:CSET 2:STATE oo ieeetieeeeee ettt e e e eeeere e e e e e e eeeabaeeeeeeeeesaessabeereeeesessssraeeereeesesnsssanes 100
SENSEL:CORRECHIONICSET 2 STAT . ..eeiiiiiitie ettt e s e e s e e e s s e e e s s eareees 100
[SENSE]:CORRECLION:CSET2[:SELECL] ..ccoiiurreieieeieieeciteeeeee e e eeetre e e e e e eeettre e e e e e e sesbaseeeeeeesessssbaseeesesesesnssenes 100
SENSE1:CORRECIONICSET2[:SELECL]..ciiitiiiieiiiiieeeiiiet e ettt e e et e e ettt e e st e e e sbre e e e st e e e e sasbeeeesnbaeeesnnseneeennsenas 100
[SENSe]:CORRection:FDOFfset[:INPUt][:MAGNItUdE]?/QONIY/ ..oooveeieeeeetee et 100
SENSe1:CORRection:FDOFfset[:INPUt][:MAGNItUE]?/QONIY/ w.oooviiiieeieeeeee ettt 101
[SENSe]:CORRection:GAINA[:INPUt][:MAGNItUE]?/QONIY/ ..cooreeeeieeeee ettt 101
SENSe1:CORRection:GAINA[:INPUt][:MAGNItUdE]?/QONIY/uviereeereeeeeeee et 101
[SENSE]:CORRECION:DCYCIEISTATE ..c.ueitieiteienieeitente ettt st ettt s at e e s bt et ettt et s bt st e sbesbe et e sbeeaeebesaeenbesneeanas 104
SENSEL:CORRECHIONIDCYCIEISTATE ..ttt sttt sttt sttt b et sbe et e s b e eae e besbe et e nbeeaeebesbeesenbeeaeens 104
[SENSe]:CORRection:DCYCle[:INPUL][:MAGNITUAE]cccermerieriirieeienieetente ettt s 104
SENSe1:CORRection:DCYCIe[:INPUL][:IMAGNITUAR]........cooeiereeiee ettt e e e e s esaaeneee s 104
[SENSE]:CORRECHION:GAIND ST AT C.ciiiiiieiieeeeee e e ettt e e e e e eeerr e e e e e e esebbaeeeeeeesesassarereeesesesssbaseneresesesnssrenes 104
SENSE1:CORRECION: GAINSISTATE ..ottt ettt e s e e s s e e s e e e e s s sarenes 104
[SENSe]:CORRection: GAIN3[:INPUL][:MAGNItUTE] ...ccevieriirieniinieeienieeiete et 104
SENSe1:CORRection: GAIN3 [:INPUL][:MAGNITUE]ccceririeriiiieientieiesieseee ettt 104
[SENSE]:CORRECION:GAINZISTATE. . .eeuiitieieetinteetest ettt sttt s et beeat et st et s bt et e sbesbe et e sbeeneebesaeensenbeeanes 107
SENSEL1:CORRECHIONIGAINZ:STATE ...ceiiiiieieeeiite ettt e e s e e st e e s s e e s snre e e s smreeesenreneeesnrenes 107
[SENSe]:CORRection:GAIN2[:INPUL][:MAGNITUAE] ...uveeeeeeeiieeiieeeee ettt et eesbaaee e e e e e e e sesnanes 107
SENSe1:CORRection:GAIN2[:INPUL][:IMAGNITUAE].....ccciiiieeeeeee ettt ee e 107
SENSe:CORRECtiON:MLPAA[:INPUL]:STATE ...ttt ettt ettt sttt st sbe ettt sat e besbeeatesbesaeens 109
SENSe1:CORRECtiON:MLPAA[:INPUL :STATE ..ottt ettt sttt ettt st sbe et sttt et e sbe et e sbesaeens 109

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1

7
[CALC:FEED is automatically set to “POW:AVER ON SWEEPL”uuriiiiee ettt 111
[SENSE]:FREQUENCY[:CW] et eeeeeee s eee e e eeeeeseeeeeeseesessaesssesessssaseseeseessesesseeseesessensesseeeesseseensenes 111
SENSEL:FREQUENCY[ICWT] it eeitiee ettt ettt e e ettt e e ettt e e st e e e e e e e ssbeeesansbaeeeassbeeessnnseneessssenessnnsenas 111
NN YT B R O TUT=T a TtV [5 (=T | PSSP 111
SENSEL:FREQUENCY[:FIXEA] . .etiiieieiiiie ettt ettt et e e e e s e e e e e bt e e e s eaabaeeeensbeeeeannsaeeeenstaeesansenas 111
[SENSe]:FREQUENCY[:CW | FIXEDT:START ..cvviitieeeieeieeteeteesteesteeseeesteeteesteesteeseeessaesnsesssesnseesseessesssesssessssesnses 113
SENSel:FREQUENCY[:CW [FIXED]:STARL ...oeiiiieeteiecieeette ettt e etee ettt e steeetteesteeeaaeesnseeensaaesnseesnsaeeseeesnseeennnes 113
[SENSE]:FREQUENCY[:CW | FIXED]:STOP ..o eeeeeee e seseeseessesesessseasesseseeseesessessessessessesseseesseseaeseses 113
SENSe1l:FREQUENCY[:CW [FIXED]:STOP.......cctieeeeeeeieeeeeerite e e tte e teese e etaeesteeeaa e e sateeenbaeesnseesnsaeeseeesnsneennnes 113
[SENSE]:FREQUENCY[:CW | FIXED]:STEP .. cutee et eetee ettt ettt e ettt et e et e eette e eeteeeeaveesbeeeeteeeebeeeesseesnseessaeesreeenes 113
SENSe1:FREQUENCY[:CW | FIXED]:STEP ..eouviiieeieecieesteestteseteeteeteesteeseeesreeenteesteesseessaessessnsesnseenseesnsssnssnsesnses 113
[SENSE]:MIRATE v ee e e eeeeeee s e s e e e s e seseeseeseseesesseseeseseeeeeseesesessesesseeseseeseseaseesesseseeeeeensesseseesesensessens 117
SEN S LM R AT @ e n s s 117
[SENSEI:SPERM ..ot eee e e s seeseae e e e s e s s eesees s eeseeseeeeeseeseeseeeeesseeseseseaseseesees s eesseseessesensesseeeesseseasraees 117
) R =l] o =Y o PP 117
[SENSE]:POWETr:AC:RANGEIAUTO ...oiitiieiiee et eeiee ettt e sttt e stee e seteesteeesaeeessbeeessseessseeeseaeenseesnsseesssessnseeesnseeenes 119
SENSEL1:POWEr:AC:RANGEIAUTO.ttt ettt e e e ettt e e e e s et e e e e s s e e snnre et e e e e e e s nnnreneeeeas 119
[SENSE]:POWEIIACIRANGE....c.uetietee ettt ettt stee ettt e site e sttt e sabeesabeessateesabeeesabeesabeesbteesabaeessbeesasaessaeesseenns 119
SENSEL:POWEIACIRANGE ..ottt e e st ee e s s e e et e e e e s s s nnreneeee s 119
[SENSE]:TEMPEIGtUIE?/GONIY/ oottt ettt ettt et s e e e e e beebeesbeesteestbesabesabeeabeenbeebeesseesasesaseenseenses 121
SENSELTEMPEIAUIE?/QONIY/ ottt ettt ettt et et e e et e e e ebe e e ebeeesateeebeeeeabeeeteseesseeeteeennns 121
Y= Yol TP PP OTUT PP 122
SERVice:BIST:TRIGEEr:LEVEL:STATE?/GONIY/ oottt ettt ettt e et e et e e tae e e teseanes 123
SERVICEIOPTION/GONIY/ ettt ettt ettt ettt et e s te e s ab e etbeeabe e beesbaestbesabesabeenbeenbeenssesssesaseensens 124
SERVICE:SECUIEERASE/NQUETY/ ..ottt ettt ettt e st e et et ete e teesteestaestbeeabeesbeesbaestsesasesabeenbeebsesssesaseenseenses 125
SERVICE:SENSOI:CDATE?/GONIY/ ittt ettt ettt ettt ettt ettt e a e e b e e be e s baestaesabeeabeenbeebeesasesaseenseensens 126
SERVICE:SENSOITL:CDATE?/GONIY/ oottt ettt e e et e e et e e et e e eebeeeeaseeeteeesareeeneeennnes 126
SERVICEISENSOIrCDUEATEvieiiieeitie ettt sttt et et e s e s be e e me e e s b e e sabeesaneesneeesaneeennees 127
SERVICEISENSOIrL:CDUEGALEeiiiiieiiee ettt sttt sttt et e et e st e e st e s be e e sme e e sareeesmreesareeesneeesanenennnes 127
SERVICEISENSOIICPLACEiiiiiiiiiiiiiiiitit ittt s bs s s b s s saba e e s s aba s 128
SERVICEISENSOIL:CPLACE ... iiiiiiiiiiiiciiii ittt s s ba e s saba e e s sabae s 128

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1

8
SERVice:SENSor:FREQUeNcY:MAXIMUM?P/GONIY/ c..oocuiieiicieeeeeectee et ettt ve e et et ba e s av e e reenre s 129
SERVice:SENSorl:FREQuency:MAXIMUM?/QONIY/ ..c.oiouiiiieeieceeeece ettt sttt n 129
SERVice:SENSor:FREQUeNcY:MINIMUM?/QONIY/ccuviiieiieieceete ettt te e e be et ba e aae s aeeare s 129
SERVice:SENSorl:FREQUency:MINIMUM?/QONIY/oooviiiiiieeiee ettt et et 129
SERVice:SENSor:POWer:AVERage:MAXIMUM?/QONIY/ ..oooouriieiiieeee ettt et et 130
SERVice:SENSorl:POWer:AVERage:MAXIMUM?/QONIY/ ..cuvviereieeeeee ettt et et 130
SERVice:SENSor:POWer:PEAK:MAXIMUM?P/QONIY/ .veiireeeeeeeeetee ettt ettt eetee e eaeeeeanes 131
SERVice:SENSorl:POWer:PEAK:MAXIMUM?P/QONIY/ ..oouveiieeeeeiee ettt et 131
SERVice:SENSor:POWer:USABIe:MAXIMUM?P/QONIY/vviieeeeeee ettt et et 132
SERVice:SENSorl1:POWer:USABIe:MAXIMUM?/GONIY/ c..oooiiieeiieeeieeeee ettt ettt ettt eeae e e 132
SERVice:SENSor:POWer:USABIe:MINIMUM?/QONIY/ ...c.uviiiiieeiee ettt ettt et eeanes 132
SERVice:SENSorl1:POWer:USABIe:MINIMUM?/QONIY/oiiiiieeieeeeeeeeee ettt ettt e 132
SERVICE:SENSOI:RADC?/GONIY/ oottt ettt ettt ettt et te e te e st e s taeebe e beesbaestaesabesabeenbeenbeesssesaseenseensens 133
SERVICE:SENSOIL:RADC?/GONIY/ eveietiiieieete ettt ettt ettt et e te et e st e staeebe e be e s baesbaesabesabeenbeenbeesssesaneenbeensens 133
SERVICE:SENSOI:SNUMDBEI?/GONIY/ .ottt ettt ettt st ebe e te e s teestae s avesabeeabeebaesbaesaseenbeenses 134
SERVICe:SENSOIrL:SNUMDBEI?/GONIY/ oottt ettt ettt et e e e be e e tee e tae e eteeeeanas 134
SERVICEISENSOITNUIMDET ...ttt sttt ettt e be e s bt sat e st e st e e b e bt e sbeesneeeanean 135
SERVICEISENSOILTNUMDBETeiiiiteeiee ettt ettt ettt ettt ettt sate e s bte e sabe e s bt e e sabeesabaeesabeesbaessaseesabeeenanes 135
SERVICE:SENSOITYPE?/GONIY/ ettt ettt ettt ettt et e te et st e e tb e ebe e beesbaestaesabeeabeenbeebsesasenaseenseensens 136
SERVICE:SENSOIL:TYPE?/GQONIY/ cniiiieiietieeee sttt ettt ettt este st s te st aesteesaessesseessessesssesesseensessenneens 136
SERVIce:VERSION:PROCESSOI?/GONIY/ oottt ettt et ete e et e e et e e ate e eeteeesbeeeteeeeteeeeteeeeanes 137
SERVICe:VERSION:SYSTEMIDFU/NQUETY/ ..ottt ettt ete e et s e et e et e eetee e s beeeteeeeteeeereeennnes 138
SERVICE:VERSION:SYSTEMP/GONIY/ .ttt ettt e e e et e e ate e e te e e e beeeteeeeaseeeteeennnes 139
SEATUS 1ttt e a e s r e s a e s s ara s 140
STATUS:PRESE/NQUEIY/ .ottt ettt ettt ettt ettt e st e st e s b e e be e beestaesaaeetbeesbeebeesbeastsesabesabeenbeebeesseessseeaseensen 144
3 (=] 1 1 [P TP TSROSO 145
SYSTEMEBLINK/NQUEIY/ oottt ettt e ete e et e ettt e e et e e et e e eatee e teeesbeeeeaeeeeaseeebesesaseesteeeeseeesntesenees 146
SYSTEMEBLINKL/NQUETY/ .ottt ettt ete e ettt e e et e eetve e eatae e teeeebeeeeseeeesseeebeeesaseestesenseeesntesennees 146
SYSTEM:COMMUNICAtEISPIICLOCKveeiiieeiiee ettt sttt ettt e et esre e e sar e sane e e smeeesaneeennnes 147
SYSTem:COMMUNICate:USB:ADDRESSccovviiiiiiiiiiiiiiiiciii e 148
SYSTem:COMMUNICAtEIUSBIINTEITACE ..c..eeruiieieeieesiieeee ettt ettt st st st es 149

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1

9

USB ClaS5 RESEL.....eeiiiiiiitie ettt ettt ettt e st e et e s it e e s bt e e s bt e sabeeebeeesabeeessbeesabeesabeeesabeeenseesnseesaneeesareeanns 149
SYSTEMEIERROI?/GONIY/ oottt ettt e e e e e et e et e e e be e eebeeeeateeebeeeesseesteeenseeesnsesenes 150
SYSTEMIHELP:HEADEIS?/QONIY/ .ttt ettt ete et e e e tee e et e et e e e ateeebeeeeateesteeeeneeeeneeennes 151
DIAG:BOOT:COLD/NQUEIY/ ..ttt ettt ettt e ettt e e e e et e eetteeetveeeetesesabeesbeeeesbeesabeseessseassaessaeessseesnsesensasesresanes 153
SYSTEMIPRESEL/NOUEIY/ ..ttt ettt ettt e e e et e e tbe e sabe e e bbeesbeeeebaeesabeeebesesabeesaseeeseeesatesennees 154
SYSTEMIVERSION?/UONIY/ ..ottt ettt e e ettt e e e e e bt e e s be e eebaeesabeeebeeesabeesabesesaeesareeenneas 155
Bl 4T OO ST P TSP PPPT PP 156
TRIGEEIDELAY:AUTO eeeeeeaaaaasaaasanaaaaanenns 157
TRIGEEILIDELAY:AUTO . eeeeaasaesasesanaaasanenns 157
TRIGEEr[:SEQUENCE]:DELAY:AUTOoiiii ettt ettt ee e e e et e e e e te e e e e eaba e e e e abaeeeeabeeeeeenbaeeeeenseneeennsenas 157
TRIGEEr:SEQUENCEL:DELAY:AUTO ..o 157
LRt LY Y/ LTe 1T = R 158
TRIGEEIL[:IMMEAIATE]/NQUEIY/ ettt ettt ettt e e et e e eat e e eteeenbeeesnbesesseeesntesenseeessesenes 158
TRIGEEr[:SEQUENCE]:IMMEIALE/NQUEIY/ ..ottt et ee e et ette et e e eaee e et s eeaeeesrteseebeeesnneeenes 158
TRIGEEr:SEQUENCEL:IMMEIAtE/NOUEIY/ ..ocveeeeeeeie ettt et eteerte e te e s e e s tbesveebeeabeesbeesbaesbaesaaeenbeensens 158
LRt Y @ TUT=T o To1=] 0 10 1 SRR 159
TRIGEErSEQUENCELICOUNL ... 159
LIt g B SO U T aTo1=] H B = I 1Y PP 162
TRIGEEINSEQUENCELIDELAY ..cccee s e e e e eeeeeeasasassanannanns 162
LIt LT B S @ U T=T aTo1=] H 5 [0 o PP 163
TRIGEEr:SEQUENCEL:HOLDOTcoii ettt e tte e e et e e e e ba e e e eatae e e eebeee e eenbeeaeennsenas 163
TRIGEEI:SEQUENCE]:SLOPEeeeee ettt ettt e e et e e e et e e e e eate e e e eeabaeeeesabaeeeeesbaeeeeestaeeeeanbaneeennbanasennsenas 164
TRIGEEINSEQUENCELISLOPE .. 164
TRIGEEISOURCE ...ttt ettt ettt ettt s h ettt he et s bt st et s bt et e e bt e he e bt s bt eateab e e abenbesbe et e sbeemeebesaeenteabeennas 165
TRIGEEILI:SOURCE ... uteteeiteteet ettt sttt h ettt st et b et e st e s bt et s bt eat e bt sbe et e sb e e atenbesbe et e sbeemeebesneeneesbeennas 165
TRIGEEI:SEQUENCE]:SOURCE ...vviiiitiiee ettt cettee ettt e e et e e et e e e et e e e e s bae e e esabeee e esabaeeeesnbeeeeeenbeeeessnseeeeesasens 165
TRIGEEINSEQUENCEL:SOURCE ... 165
L 0V SO OPPPN 167
UNITIPOWEK ...ttt ettt ettt et e ettt e e e e e et tet et e e e e e e s bebeeeeeeseaaaan b e b eeeeeeeee s ansebaeeaeeeeaaannnsbeeeeesesanan 168
UNITLIPOWET <.ttt sttt ettt h et b e s bt et e bt e st et e bt et e sbeeat et e sh e et e s bt eabe bt eatenbesbe et e sbeentenbesaeenee 168
StaNdard SCPI COMMANGS......c..uiiiiiiieiieieeee ettt sttt sttt e b e sbe e st st s bt e bt e b e e sbeesmeesaneenreenreesneesneenas 169

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1

10
O I s 1o T =1 V7 USRSt 170
ol] PPN 171
R Y g o To L o1 V7 AUt 172
KIDINP/GONIY/ ettt ettt e ettt e et e e et e e e tbe e e beeeeabeesbeeebbeesabes e bseeasbaeebeeeesbeeenbaeeasaeesbeeenes 173
ol ©] G 174
O P T 2/ QONIY/ ettt et e e e et e e ettt e e te e e e tae e e tbe e e beeeeabee s beeeabbeeebee e baeeatbaeeabaeeatbeeabeeearaeesreeenes 175
R (LI T TR =] 7 USRSt 176
R SR 74 s T U 1=] 7 USRIt 177
Y\ o To U =T V7 AUt 178
Y | PR 179
ST B 2/ QONIY/ oottt ettt et et e e et e e et e e e ta e e be e e eteeeebeeebeeeabaeeeabeeeateeeatbeeeateeeatbeeabeeearteesteeanes 181
ETRG/NOUEIY/ oottt ettt et e ettt e e te e e ete e e e tae e e beeeeteeeesbeeebaseeabeesabeeebesesabesasseensbeeesesensseesnsesensseesteeenes 183
T ST 2 UONIY/ ettt e et e et e e e be e s be e e bt e et e s abe e be e ba e baeabbeeabeeabeebeeabeeshaeeaaeeabeebeebeebaenees 184
MV AL/ NGUETY/ ottt ettt ettt e et e st e e tae e beebeeebeesbeestaesabesabeeabe e baebaeasbeeaseesbeerbeeteestaestsesasesabeenbeesennses 185
5 PR 186

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
11

Theory of Operation

LadyBug LBSF series power sensors convert the RF signal into a digital value that is delivered over its interfaces.
The sensor is calibrated with first tier traceable standards. The architecture consists of several key components:

e Multipath Diode Detector: Provides initial signal detection and processing

e Analog-to-Digital Converters: Convert signals to digital format for further processing
o Digital Processing Unit(s): Calculates measurements and applies calibration

e Interface System: Enables communication with external devices and software

Key capabilities of the LBSF series include:

e RMS Responding: Measurements represent the RMS value of the signal capture

e Active Thermal Stabilization: Maintains accuracy across the specified temperature range without user
calibration

e Continuous Measurement: Provides uninterrupted measurements without drift

e Measurement Integrity: Calibrated using first-tier traceable standards

e Interfaces: USBTMC (USB Test and Measurement Class), USB HID; Optional: TTL (SPI, 12C)

e Additional 10: Trigger IN, OUT Optional: Analog Recorder Out

e Extended Temperature Option: Lowers minimum operating temperature to -55C

The sensors are designed for use in automated testing systems, however they are suitable for general
measurement use also.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
12

Introduction to the SCPI Language

Standard Commands for Programmable Instruments (SCPI) is an ASCll-based instrument command language
designed for test and measurement instruments. SCPI commands are based on a hierarchical structure. Syntax,
allowable characters etc. are described below:

Allowable characters:
¥,

or space
A-Z, a-z, 0-9

Note that SCPI commands are not case sensitive, and consecutive spaces are treated as one single space

Command structure:

All communication (or commands) sent to the sensor are composed of one or two parts. These parts are the
command and the parameters. Commands are separated from parameters by a single space. So, the headers”
SENS” and “FREQ” cab be combined with Parameter “10.0e6” to create the complete command “SENS:FREQ
10.0e6”

Command
Commands are composed of one or more headers. A header is 3-12 characters in length. Headers can be
concatenated using a colon.

¢ Single header — FREQ?
* Concatenated headers — SENS:FREQ:CW

Parameters
Parameters are limited to floating point numbers, integers, Boolean and text. The number and types of
parameters are specific to each command. Parameters are concatenated by commas

* A single parameter 10
¢ Multiple parameters 10, 3
¢ Another example of multiple parameters 10.0e6, 3.0
The following command will set the frequency to 1.02GHz. Note that the command is FREQ and the parameter is

1.02E+9 and they are separated by a space.

FREQ 1.02E+9

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1

13

Command Conventions

This manual uses the most common conventions for expressing SPCI commands, the conventions are:

Brackets [] identify optional headers of a command. Brackets may be nested. Any header designated as
optional may be omitted. Consider the following definition of a command:

[SENSe[1]:]FREQuency[:CW | :FIXed] <numberic_value>
Given this definition the following commands are equivalent:

FREQUENCY 100MHZ omitting all optional headers
SENSE1:FREQUENCY 100MHZ including the SENSE[1] header

A vertical line | is used in the definitions to delineate mutually exclusive portions. All of the following are
acceptable and equivalent. In these examples the focus is on the [:CW|:FIXed]portion of the command:

[SENSe[1]:]FREQuency[:CW | :FIXed]
FREQ:CW selecting the [:CW] option
FREQ:FIXED selecting the [:FIXed] option

Upper and lower case letters in a definition delineates the short form (or abbreviation) and the long
form of a header. The upper case letters indicate the short or abbreviated form of a header. The entire
header (upper and lower case) represents the long form of the header. Consider the following command
definition:

[SENSe[1]:]FREQuency[:CW | :FIXed]
Given the previous command definition, the following are equivalent:

FREQUENCY 100.0E+6 uses a long header, excludes all options
SENSE1:FREQUENCY 100MHZ includes the optional [1]

e In some cases units may be appended to a numeric value. However, this is always specific to the command.

For instance:

FREQ 1.3MHZ includes the units
FREQ 1.3E+6 does not include the units

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
14

Basic Power Measurements

This section is a brief overview on how to make basic power measurements programmatically with LBSFxx
sensors. The Ladybug Interactive |0 application included with PMA-12 can be used to perform these examples.

Default Condition

When making power measurements programmatically, it is important to know the condition of all settings that
affect the power measurement. The measurement examples provided here include commands to set some of
these parameters. Below are brief explanations for some of the pertinent settings, for full details of these
settings refer to SYST:PRES and CONFifure command sections.

SYST:PRES DEF command sets the following:

Setting Equivalent command
Set the trigger source to immediate, (disabling external triggering) TRIG:SOUR Imm

Set Averaging to 4 (Note will be changed by automatic averaging) SENS:SVER:COUN 4
Turn on automatic averaging (Adjust averaging based actual on power level) | SENS:AVER:COUN Auto
Turn on averaging SENS:AVER:STAT On
Turn on step detection SENS:AVER:SDET On
Set continuous initiation INIT:CONT On

Turn on automatic trigger delay (relates to the external trigger if used) TRIG:DEL:AUTO On

Set Trigger delay (Delay after the trigger event to measurement start) TRIG:DEL O

NOTE: *RST commands is identical to SYST:PRES DEF except *RST sets the following:
Set continuous initiation (*RST Sets to off) ‘ INIT:CONT Off

Note: This is a partial list of conditions after *RST and SYST:PRES

CONGigure sets the following:

Setting Equivalent command
Set the trigger source to immediate, (disabling external triggering) TRIG:SOUR Imm

Turn on automatic averaging SENS:AVER:COUN Auto
Turn on averaging SENS:AVER:STAT On
Turn off continuous triggering (Sets the sensor to single trigger) INIT:CONT Off

Turn on automatic trigger delay (relates to the external trigger if used) TRIG:DEL:AUTO On

Note: Careful consideration should be taken when using configure for automated measurements because it can
result in unknown measurement time.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1

15

Measurement Strategies
A basic understanding of how the power sensor processes measurements is useful when planning how to make

programmatic measurements. Here are a few important considerations.

e Number of averages (or capture window size). Default number of averages is 4 = (~144ms) see the
MRAT command for timing details. Note: more averaging will be required to achieve accuracy at low

power levels.
e Frequency of the signal. This must be set so that the power sensor utilizes the proper calibration data.

e (Certain settings that affect the measurement such as automatic averaging (AVER:COUN:AUTO on/off),
step detection (SDET on/off). It is important to understand these settings and make sure they are set

properly prior to starting the measurement.

e Measurement start point timing (Review in Figure 1)

@)

4 Averages 4+ 4 Averages 4 Averages

Free run mode with FETCh?, returns the power level that occurred right before the
measurement (A). This is often used when continuous measurements are being made. The
measurement is returned immediately, and consists of the most recent number of averages
from a circular buffer.

Start a measurement and return data after the measurement is complete using READ? (B). This
is often used programmatically, for example a source is set, allowed to become stable, and then
the measurement is started.

When even greater starting point accuracy is required, READ? With external triggering can be
utilized (C). After the measurement is initialized, the sensor begins waiting for a trigger to occur,
when the trigger occurs the measurement is processed. See the Triggering section for additional
details.

A B C

FETCh? || Return . 5 1 Return READ? Return

data data data

sy e ' WY LT ot Y R VM nfyr et

Trigger 1
Time BB

Figure 1 - Measurement Pictograms

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
16

Measurement examples
Two basic methods can be used to make power measurements with LBSFxxx power sensors.

e Free Run mode (continuous initiation): The sensor continuously takes readings and places them into a
circular buffer for averaging and collection as requested (Figure 1A).

e Single Initiation: Used to capture power readings at a specific starting point, average them into a
measurement, and return it when complete (Figure 1B & 1C).

There are three measurement commands that can be used to make the power measurement.

e FETCh? Calculates and returns a measurement that has already been initiated. Note: The measurement
can be continuously initiated as shown in Figure 1A, or with single initiation.

e READ?, Initiates, processes and returns a measurement. Provides a controlled starting point and is
recommended if triggering is planned for the measurement.

e MEAS?, Uses dynamic settings (adjusts averaging) to make a measurement. NOTE: This is a single
initiation command that can take up to a minute depending upon the signal level and other settings.

Prior to making any measurement a few commands must be run to set up the sensor. Other than MEAS?, the
examples below include settings that turn off automatic settings to allow full control of the measurements.

Free Run Mode (INIT:CONT=1)

When the sensor is placed in continuous initiation (Free Run mode) it continuously takes readings and places
them into a circular buffer. FETCh? averages and returns measurements immediately from the buffered data.
This measurement can be viewed ad as a “trailing” measurement, and is the default method when using
LadyBug’s PMA-12 software.

Using FETCh?

- SYST:PRES DEF Set the sensor to a known condition

- AVER:COUN:AUTO OFF Disable Automatic averaging

- SENS:AVER:SDET OFF Turn off Step Detection

- INIT:CONT ON Assure that continuous initiation is on (sets free run mode)
- SENS:AVER:COUN 5 Set to 5 averages (use your own number)

- FREQ 2600 MHz Set to 2.6 GHz (use your own frequency)

- FETCh? Make the measurement

- FETCh? Repeat as required

- FETC? The “h” is not required

Note: The command to turn on INIT:CONT is un-necessary because it was set to On by SYST:PRES, it is shown for
explanatory purposes. However some programmers consider it a good practice to assure the setting is correct
when making the measurement.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
17

Single Initiation Mode (INIT:CONT=0)

When the sensor is placed in single initiation mode it must be initialized to start a measurement. Unlike
continuous initiation mode, the return is not immediate because the readings are taken after initialization. This
type of measurement is ideal when a measurement starting point is important.

Using READ?
READ? initializes the measurement and then returns it after it is complete.

- SYST:PRES DEF Set the sensor to a known condition

AVER:COUN:AUTO OFF
SENS:AVER:SDET OFF

Disable Automatic averaging
Turn off Step Detection

- INIT:CONT OFF Turn off continuous initiation

- SENS:AVER:COUN 5 Set to 5 averages (use your own number)
- FREQ 2600 MHz Set to 2.6 GHz (use your own frequency)
- READ? Takes and returns the measurement

- READ? Takes and returns the measurement

Using READ? with an external trigger

SYST:PRES DEF
AVER:COUN:AUTO OFF
SENS:AVER:SDET OFF
INIT:CONT OFF
TRIG:SOUR EXT

Set the sensor to a known condition

Disable Automatic averaging
Turn off Step Detection

Turn off continuous initiation
Change the trigger to external

- SENS:AVER:COUN 5
- FREQ 2600 MHz

- READ?

Initiates (starts) the measurement, and waits for a trigger, then processes and returns the measurement.

Set to 5 averages (use your own number)
Set to 2.6 GHz (use your own frequency)

Using MEAS?

MEAS? is an automatic measurement that uses the settings established by CONFigure. There is a disadvantage in
using MEAS? in automated test environments that should be considered. The time to take a measurement is
determined automatically by the sensor. It could take up to 60 seconds if no RF power has been applied to the
sensor. This variable time can be problematic in ATE systemes, it is usually preferred to understand the signal and
set the parameters accordingly when possible.

- FREQ 2600 MHz Set to 2.6 GHz (use your own frequency)
- MEAS? Make the measurement

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
18

Interface Information

General:

The standard interface on LBSFxxx power sensors is USB. The USB Interface can be either USB HID or USBTMC.
Optional HiSLIP LAN, SPI and I2C TTL interfaces are also available. All of these use the same command set, and
are briefly explained here. Please refer to the specific guides for detailed usage of the Optional Interfaces.

The standard interface for LBSFxxx power sensors is USB, supporting both USB HID and USBTMC communication
protocols. Optional interfaces include HiSLIP LAN, and TTL interfaces SPI & 12C.

This section provides a brief overview of each interface. For detailed instructions on using the optional
interfaces, please refer to their respective guides.

USB Interface:

The USB default condition is USB HID, however this can be changes so that the sensor defaults to USBTMC.
Note: If the sensor has Option MIL installed, the USB interface change will not be stored. Refer to the interface
commands in the System settings.

LAN Interface:

The Option LAN interface utilizes HiSLIP (High Speed Lan Interface Protocol) and the sensor is powered with PoE
(Power over Ethernet). The sensor and interface are compatible with VISA |0 and are “drop-in” usable with
measurement environments such as Keysight, Nl and MATLAB.

The bulk of the sensor’s SCPI commands are passed through the LAN interface and processed in the sensor as
detailed in this manual. LAN specific commands are compatible across LadyBug LAN products and are detailed in
the LAN Programming Guide and LAN Getting Started Guides.

The LAN interface includes a web power meter and Interactive 10. These detailed in the LAN Getting Started
Guide.

SPI and 12C Interfaces:

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
19

LBSFxx Programming Reference
Generally, all commands sharing the same first header (e.g. SENSE or TRIGGER) are related and grouped

together. Each individual command is detailed as to its syntax and usage. Interactions are often noted as well as
some of the more common usage errors associated with the various commands.

The explanation of most commands is accompanied by sequences of commands and their return values. These
sequences (and return values) were executed using the Ladybug Interactive 10. The results were copied directly
from the Ladybug Interactive 10 application into this document. The commands sequences can be repeated in
other vendor’s interactive applications that provide USBTMC support (such as National Instrument or Keysight
10 libraries).

In this document, some command descriptions include specific markers such as /nquery/ or /qonly/. These
markers provide additional details about how the command can be used:

e /nquery/: This command is not designed to return data. If it is used as a query, an error will be
generated.

e /gonly/: This command is query-only and cannot be used as a standard command. Attempting to use it
otherwise will result in an error.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
20

Measurement Commands
The following parameters are common to most measure commands.

Measurement Command Optional Parameters

The following applies to measurement commands. Some commands use these optional parameters to configure
the instrument while other commands use them for comparative purposes. In these comparative cases, if the
parameters passed in do not match current settings one or more errors are generated. When this comparative
process generates errors the measurement process is halted.

Name Description Acceptable Values

<expected value> or Indicates the expected power level. | -60dBm to +23dBm
Not used by the LBSFxx sensors.

Ex val .
pected value Numeric values are dBm or W

depending on the unit setting. 1.000001E-9W to +1.995262E-01W
DEF2?
<function> Measurement function POW:AC
<resolution> or Sets the resolution. This is used to 1,2, 3,4
Resolution determine averaging time if

AVER:COUN:AUTO =TRUE
DEF?

<source list> or Source list | Measurement channel (@1)°

! The allowable values are 1, 2, 3 and 4. These values are interpreted to mean 1dB, 0.1dB, 0.01dB and 0.001dB of resolution
respectively.

2 DEF means default. The sensor interprets DEF this mean “use this parameter’s current value”. So that CONF DEF,3 would
not change <expected value>. However, <resolution> would be set to 3.

3 This parameter may only be (@1). It is normally not supplied. If omitted, the value is assumed to be (@1)

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
21

CONFigure[1]?

Syntax:
Most common form:

CONE'?

Long form:
CONFIGURE?

Description:

This command queries the sensor for its current configuration. A single string containing four parameters is
returned. The parameters returned in the string are: <function>, <expected value>, <resolution> and <source
list> respectively.

Example:
In the following example various forms of the command are exercised.

0000115 - CONE?

0000116 ~ "POW:AC +2.000000E+01,+4, (Q1)"
0000117 - CONFIGURE?

0000118 ~ "POW:AC +2.000000E+01,+4, (Q1)"
0000119 - CONF1-?

0000120 ~ "POW:AC +2.000000E+01,+4, (Q1)"
0000121 - CONFIGURE1-?

0000122 ~ "POW:AC +2.000000E+01,+4, (Q1)"

Explanation of returned values in line 0000116:

e The various parameters are:
<function> = POW:AC
<expected value> = +2.000000E+01
<resolution> = +4
<source list> =(Q1)
e POW:AC is the command or measurement function (average power)
e +2.000000E+01 isthe expected value. This is 20dBm and assumes UNIT:POW = DBM. This value is not
used by LBSFxx sensors. However, it is tracked and reported as if it is being used for compatibility reasons.
e +4 indicates a resolution of 0.001dB. The value can range from 1 to 4 inclusive. This parameter is used by
AVER:COUN:AUTO (auto averaging) in conjunction with the measured value to determine the number of
averages or averaging time.

(@1) indicates the measurement channel. The LBSFxx supports one channel so this will always be (@1)

Reset Condition:

The parameters are sets as shown below upon *RST

e Command function is set to POW:AC

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1

e Expected value is set to +20dBm
e Resolutionissetto 3
e Source listis set to (@1)

LBSFXX Series True-RMS Power Sensor Programming Guide v1

22

LBSFXX Series True-RMS Power Sensor Programming Guide v1
23
CONFigure[1] or CONFigure[1][:SCALar][:POWer:AC]

Syntax:
Most common form:

CONF <expected value>, <resolution>

Long form:
CONFIGURE:SCALAR:POWER:AC <expected wvalue>, <resolution>, (@1)

Description:

This command configures the sensor for measurements.

e Expected value — This parameter tells the sensor the power level the user intends to measure. The value
often passed into the LBSFxx is DEF (default) since this parameter has no effect with the LBSFxx. However,
the value is retained and tracked as if it is used for compatibility reasons.

e Resolution — This parameter sets the number of settled digits for the measurement. The permissible values
are 1, 2,3 and 4. Where 1 indicates a resolution of 1dB and 4 indicates a resolution of 0.001dB. If DEF is
passed instead of a value then the current value is used.

e Source List - With the LBSFxx sensors this is normally omitted in that it has no affect. However, Source list is
(if included) must be (@1).

Example:

In the following example the configuration is set using the most common form and the full form of the
command. After setting the configuration the configuration is queried to verify its effect.

0000127 - CONF 10,2

0000128 —. CONF?

0000129 — "POW:AC +1.000000E+01,+2, (@1)"
0000130 . CONFIGURE:SCALAR:POWER:AC 15, 1, (@1)
0000131 —. CONF?

0000132 — "POW:AC +1.500000E+01,+1, (@1)"

Additional Information:

After this command is executed, measurements can be made by executing a MEAS? or READ? or an INIT
command followed by a FETCH? command. Executing CONF has side effects in that changes are made to other
settings. These changes are as follows:

INIT:CONT OFF This may affect subsequent FETCH? commands

TRIG:SOUR IMM The sensor to starts a measurement upon receipt of the command.
TRIG:DEL:AUTO ON Enables automatic delay before making a measurement
AVER:COUN:AUTO ON Enables auto averaging.

AVER:STAT ON Enables averaging

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
24

FETCh[1]?0r FETCh[1][:SCALar][:POWer:AC]?

Syntax:
Most common form:

FETC?

Long form:
FETCH1 :SCALAR:POWER:AC? <expected wvalue>, <resolution>, (@1)

Description:

Executing this command causes a measurement to be calculated and returns the value to the host (PC) when
queried if the value is valid. The value can be invalidated when:

e *RSTis executed
e A measurement is initiated
e Any time a parameter or setting is changed that affects the value is changed.

The returned value is normally text but it can be in a binary form (see the FORMAT commands).

Example:

In this sequence INIT:CONT is set to zero. This means that you must send the INIT command to initiate a new
measurement. If you don’t send an INIT before fetching (INIT:CONT disabled) then you’ll get the most recent
measurement. In lines 53 and 55 the values are repeated. This indicates that you’re getting the same
measurement. This is normal operation for FETCH? with INIT:CONT disabled.

0000045 - INIT:CONT O
0000046 — INIT:CONT?
0000047 —~ O

0000048 - INIT

0000049 - FETCH?

0000050 ~ -3.82458461E+01
0000051 - INIT

0000052 - FETCH?

0000053 ~ -3.82517515E+01
0000054 - FETCH?

0000055 ~ -3.82517515E+01

If INIT:CONT is enabled you get a new measured value each time. This is because the sensor is supplying a
continuous stream of INITs. This is sometimes referred to as free run mode. This is shown in the following
sequence. You can see that the measured value changes for each FETCH? The sensor is supplying the INIT
commands so that there is no need for the INIT.

0000056 — INIT:CONT 1
0000057 — INIT:CONT?
0000058 ~ 1

0000059 - FETCH?

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
25

0000060 ~ -3.82422265E+01
0000061 — FETCH?
0000062 ~ -3.82466078E+01
0000063 — FETCH?
0000064 ~ -3.82478426E+01

An example of the the long form of FETCH? is shown in the following sequence.

0000078 — CONE?

0000079 — "POW:AC -3.000000E+01,+4, (@1)"
0000080 — FETCH? -30,4, (@1)
0000081 — -3.82494301E+01

0000082 — FETCH? -30,4, (Q1)
0000083 ~ -3.82418777E+01

0000084 . FETCH? -30,4, (@1)
0000085 —~ -3.82471240E+01

0000086 — FETCH? -30,3, (@1)
0000087 ~ timed out

0000088 — SYST:ERR?

0000089 ~ -221,"Settings conflict"
0000090 . FETCH? DEF,DEF, (Q1)
0000091 ~ -3.82537947E+01

0000092 - FETCH? DEF,DEF, (Q1)
0000093 ~ -3.82523698E+01

0000094 . FETCH? DEF,DEF, (@1)
0000095 — -3.82494074E+01

Note that, unlike MEAS?, the parameter information provided in a FETCH? (in lines 80, 82 and 84) does not

change the configuration. Instead the parameters are used to confirm that the current configuration matches
the parameters sent as part of the FETCH? command.

A mismatch between the parameters and the configuration results in “Settings conflict” error as seen in line 89.

This occurred because the resolution in the FETCH? command was set to 3. And as previously demonstrated it is
set to 4. This generated the timeout. Finally, if there is a need to use the full form of the command and you want
to avoid the error message you can use DEF instead of passing explicit values for the parameters.

Common Error Messages:

Error -230 “Data corrupt or stale”: This can happen after a *RST, a measurement is initiated, or as a result of
changing certain parameters (frequency, averaging etc.). These are parameters that can potentially affect the
measurement result.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
26

MEASure[1]? or MEASure[1] [:SCALar][:POWer:AC]?

Syntax:
Most common form:

MEAS?

Long form:
MEASURE] : SCALAR: POWER:AC? <expected value>, <resolution>, (Q@1)

Description:

The measure command starts by configuring the sensor using the parameters passed in the command. After the
configuration is complete it continues with the measurement and ends by placing the result in the output buffer.
The process commences when the command is received.

MEASure? = CONFigure + READ?

It is important to remember that MEAS? forces a CONF command to be executed. While the executing CONF
command has no measureable effect on the total measurement time it does carry all of the attendant side
effect. These side effects noted in the CONF command description includes disabling INIT:CONT, setting the
trigger source to immediate and so on.

This command configures the sensor for measurements then makes the measurement.

e Expected value — This parameter tells the sensor the power level the user intends to measure. The value
often passed into the LBSFxx is DEF (default) since this parameter has no effect with the LBSFxx. However,
the value is retained and tracked as if it is used for compatibility reasons.

e Resolution — This parameter sets the number of settled digits for the measurement. The permissible values
are 1, 2, 3 and 4. Where 1 indicates a resolution of 1dB and 4 indicates a resolution of 0.001dB. If DEF is
passed instead of a value then the current value is used.

e Source List - With the LBSFxx sensors this is normally omitted in that it has no affect. However, Source list is
(if included) must be (@1).

Example:
The following demonstrates how to make a measurement using the most common and the long form or MEAS?

0000001 — *RST

0000002 _. MEAS?

0000003 — -3.03355249E+01

0000004 —. MEASUREL:SCALAR:POWER:AC? -30, 4, (@1)
0000005 — -3.03415129E+01

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
27

READ[1]? or READJ [1] [:SCALar][:POWer:AC]?

Syntax:
Most common form:

READ?

Long form:
READI1 : SCALAR:POWER:AC? <expected wvalue>, <resolution>, (@1)

Additional Forms
READ? DEF, <resolution>

Description:

This query aborts any measurement in process. This is followed by an INIT command (internally) and potentially
continues with the measurement concluding by placing the measurement result in the output buffer. Unlike
MEAS? this command does not use the optional configuration information to configure the measurement.

Instead, the configuration parameters passed via READ? command are used for comparison. And if there is a
mismatch between the parameters passed in the READ? command and the current configuration an error is
generated. No measurement is placed in the output buffer. If the parameters do match the process continues
with the measurement. And the subsequent result is placed in the output buffer.

Example:

In the sequence below, several forms of READ? are exercised. Included is the deliberate generation of a
configuration mismatch error. READ? is often used with the CONF command. In this case you must be sure to
mitigate unwanted side effects of using CONF,

Commands Comments
0000001 . *RST
0000002 - READ? common form of READ?

0000003 ~ -2.04422867E+01

0000004 — READ:SCALAR:POWER:AC? long form of READ? without parameters
0000005 ~ -2.04437082E+01

0000006 — READ:SCALAR:POWER:AC? DEF, DEF, (Ql) long form of READ?2 with default parameters
0000007 ~ -2.04398956E+01

0000008 — CONEF? get current configuration

0000009 ~ "POW:AC +2.000000E+01,+3, (@1)"

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1

28

0000010 — READ:SCALAR:POWER:AC? DEF, 4, (Q1) resolution mismatch!
0000011 ~ timed out the mismatch should generate an error or two,

and it did!
0000012 - SYST:ERR? geft...
0000013 ~ -221,"Settings conflict" ...the first error
0000014 - SYST:ERR? geft...
0000015 —~ -420,"Query UNTERMINATED" ...the second error
0000016 — READ:SCALAR:POWER:AC? DEF, 3, (Q1) resolution matches this fime...
0000017 —~ -2.04420077E+01 ...no error, returns a measurement
0000018 — READ:SCALAR:POWER:AC? DEF, 3 same command without source list

0000019 —~ -2.04415148E+01

Common Error Messages:

Again, it is important to refer to the CONF command to understand the side effects associated with CONF. Some

settings can generate errors when using READ? and prevent READ? from delivering a result.

e INIT:CONT must be disabled or OFF before trying to make a measurement with READ? If a READ? command
is issued with INIT:CON enabled or ON the following errors are generated:

o 213 “Init ignored”
o 420 “Query UNTERMINATED”
e If the trigger source is either BUS or HOLD the following errors are generated:
o 214,"Trigger deadlock"
o 420,"Query UNTERMINATED"
e Finally, if parameters are passed as part of a READ? command they must either match the current settings
or be set to default (“DEF”). Otherwise the following errors will be generated:
o 221,"Settings conflict"
o 420,"Query UNTERMINATED"

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
29

Calculate Commands

In power sensors supporting SPCI, the calculate commands use measurement data in post-processing. The
primary function is setting limits and reporting how a sequence of measurements performed relative to these
limits.

To this purpose the LBSFxx power sensors allow the user to set upper and lower power limits. These limits are
then used for “failure” counting. A failure is any measured outside the defined limits. The type of counting is
dependent on the settings. It can keep track of failures in one of two ways:

1. It canreport the accumulated number of failures since the failure count was reset
2. It can report that a failure did or did not occur with the most recent measurement
3. Combines the first two options

In the second case the count is continuously reset. This limits the count to 0 and 1 indicating that the most
recent measurement has failed. Otherwise, the count is generally allowed to accumulate until it is cleared. The
upper limit of counting is 65535. An error is issued anytime the count exceeds this value.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
30

CALC:FEED[?] or CALCulate[1]:FEED[?]
CALC:MATH[?]or CALCulate[1]:MATH:EXPRession[?]

CALC:MATH:CAT? or CALCulate:MATH:EXPRession:CATalog?

Syntax:
Most common forms:

CALC:FEED?
CALC:FEED "POW:AVER"

CALC:MATH?
CALC:MATH " (SENS1)™"
CALC:MATH:CAT?

Long forms:

CALCulatel:FEED?

CALCulatel:FEED "POW:AVER"
CALCulatel :MATH:EXPRession?
CALCulatel:MATH:EXPRession " (SENS1)"
CALCulate:MATH:EXPRession:CATalog?

Description:

These commands set or return the current function (“POW:AVER”) or the math expression catalog. These values
are singular and fixed. In other words there is one, and only one, permissible value for each of these commands.
These commands have greater value in instruments possessing multiple detectors and sensors. Since this sensor
is dedicated to single channel average power measurements, these commands are of limited use beyond
command and driver compatibility.

Examples:
Commands Comments
0000124 - CALCl:FEED? what is the measurement mode...
0000125 — "POW:AVER" ...measuring average power
0000126 — CALCl:FEED "POW:AVER" set the feed fo the only permissible value
0000127 - CALC:MATH:EXPR? what is the current math expression...
0000128 — " (SENS1)" ...we have one channel
0000129 — CALC:MATH " (SENS1)" set the math expression to the only allowable value...
0000130 - CALC:MATH:EXPR:CAT? get a list of math expressions...
0000131 —~ " (SENS1)" ...there is only one

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1

31

CALC:LIM:CLEar:AUTO[?] or CALCulate[1]:LIMit:CLEar:AUTO{?}

Syntax:

Most common forms:

CALC
CALC

:LIM:CLE:AUTO?
:LIM:CLE:AUTO

Long forms:
CALCulatel:LIMit:CLEar:AUTO?

CALCulatel:LIMit:CLEar:AUTO <0|1]|ONCE>

Description:

<0|1]|ONCE>

The parameter provided with this command controls how and under what conditions the failure count is

cleared. Permissible values are 0, 1 or ONCE. Each meaning is below:

e |[f the value is 0 or OFF the failure count is NOT automatically cleared. Rather the count is cleared ONLY

when the sensor receives a CALC:LIM:CLE command.

e |[fthe value is 1 or ON the failure count is cleared immediately before each measurement. This setting

indicates pass/fail of the most recent measurement. These command cause the count to be cleared if:

o INIT or INIT:IMM command is issued

o A measurement commences with INIT:CONT set to 1 or ON

o A MEAS? command is executed
o A READ? command is executed

e If the feature is set to ONCE, the count is cleared starting upon starting the next measurement. Thereafter

the sensor behaves as if this feature was set to 0 (never automatically cleared)
e The countis also cleared by CALC:LIM:CLE:AUTO 1 (or ON)

Example

This sequence demonstrates the use of most of the CALC commands. This is done because of inadequacy of

demonstrating the commands in isolation of each other.

The sequence starts by setting limits and enabling limit checking. Initially source power is set to a level between

the upper and lower limits. Measurements then proceed. Under these circumstances no failure should occur.

The sequence continues by setting the source power below the lower limit. Measurements recommence and

failures occur. Source settings remain unchanged thereafter. However, settings that manage failure tracking are

varied and the resulting effects are demonstrated.

Commands
0000714 -
0000715 -
0000716 -
0000717 -
0000718 -

*RST
AVER:COUN:AUTO 0
AVER:COUN 10
CALC:LIM:LOW -10
CALC:LIM:UPP 10

Comments

Set sensor to a known state

Disable auto averaging (convenience)
Set average count to 10 (faster)

Set lower...

...and upper limits

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1

0000719 - CALC:LIM:STAT 1
0000720 — CALC:LIM:FAIL?
0000721 ~ O

0000725 - CALC:LIM:FCO?
0000726 — +0

Set source power to 0dBm

0000727
0000728
0000729
0000730
0000731
0000732
0000733
0000734
0000735
0000736

—

—

—

—

—

—

—

READ?
-3.83508613E-01
READ?
-3.84266024E-01
READ?
-3.84728069E-01
CALC:LIM:FAIL?
0

CALC:LIM:FCO?
+0

Set source power to -20dBm

0000737
0000738
0000739
0000740
0000741
0000742
0000743
0000744
0000745
0000746
0000747
0000748
0000749
0000750
0000751
0000752
0000753
0000754
0000755
0000756
0000757
0000758
0000759
0000760
0000761

—

—

—

—

READ?
-2.04607346E+01
READ?
-2.04601199E+01
READ?
-2.04593472E+01
READ?
-2.04591619E+01
CALC:LIM:FAIL?
1

CALC:LIM:FCO?
+1

CALC:LIM:CLE
CALC:LIM:CLE:AUTO O
CALC:LIM:FAIL?
0

CALC:LIM:FCO?
+0

READ?
-2.04572978E+01
READ?
-2.04567314E+01
READ?
-2.04565999E+01
CALC:LIM:FAIL?

Turn on limit checking
Any failures yet?

Nope

Failure count?

None

Should not cause failures

Start making some measurements

Any failures?

Nope!

And the count...

...is zero

This change in power level should cause failures..

Start making more measurements

Any failures?

Yes

How many...(default value for CALC:LIM:CLE =1)

... shows a count of one. Resets on start of measurement
...Clear the failures

...disable failure auto clear

Any failures yet

No. There shouldn’t be since ewe just cleared failures
And the count is..

...0, this is also correct

Make some measurements...source is still at -20dBm

Any failures?

LBSFXX Series True-RMS Power Sensor Programming Guide v1

32

LBSFXX Series True-RMS Power Sensor Programming Guide v1

0000762
0000763
0000764
0000765
0000766
0000767
0000771
0000772
0000773
0000774
0000775
0000776
0000777
0000778
0000779
0000780
0000781
0000782
0000783
0000784
0000785
0000786
0000787
0000788
0000789
0000790
0000791
0000792
0000793
0000794
0000795
0000796
0000797
0000798
0000799
0000800
0000801
0000802
0000803
0000804
0000805
0000806

-1

. CALC:LIM:FCO?
43

. CALC:LIM:CLE:AUTO?
<0

— CALC:LIM:CLE:AUTO ONCE
. READ?

< -2.04522242E+01
. READ?

« -2.04518298E+01
. CALC:LIM:FAIL?
-1

. CALC:LIM:FCO?
.

. CALC:LIM:CLE:AUTO ONCE
— READ?

< -2.04521913E+01
— READ?

< -2.04511674E+01
— READ?

< -2.04518987E+01
— READ?

< -2.04508453E+01
— CALC:LIM:FAIL?
-1

. CALC:LIM:FCO?
— +4

— READ?

— -2.04508859E+01
— READ?

— -2.04509669E+01
— READ?

— -2.04509931E+01
— CALC:LIM:FAIL?
-1

. CALC:LIM:FCO?
_—

— CALC:LIM:CLE:AUTO ONCE
— READ?

« -2.04511196E+01
— CALC:LIM:FAIL?
-1

Yes...and there should be

How many?

correct... count is not clearing for each measurement

and auto failure clear is...
...still disabled
<<<<<---- Setup to clear once then count

Start making measurements...

Any failures...
Yes

Count is..

2

<<<<<---- Set it to clear once and then count again

Make measurements

Any failures?

Yes

And we counted only those failures that occurred...

... after clearing once

So keep making measurements

Any failures

Yes

How many?

Continued counting since clearing once on line 779
Auto clear to once a final time

Make some measurements

Any failures?

LBSFXX Series True-RMS Power Sensor Programming Guide v1

33

LBSFXX Series True-RMS Power Sensor Programming Guide v1

0000807 — CALC:LIM:FCO? Yes but...

0000808 ~ +1 ...just one so it must have cleared as it should

LBSFXX Series True-RMS Power Sensor Programming Guide v1

34

LBSFXX Series True-RMS Power Sensor Programming Guide v1

CALC:LIM:CLE[?] or CALCulate[1]:LIMit:CLEar[:IMMediate][?]

Syntax:
Most common form:

CALC:LIM:CLE

Long form:
CALCULATE]l :LIMIT:CLEAR: IMMEDIATE

Description:

Clears the failure indicator (CALC:LIM:FAIL?) and failure counter (CALC:LIM:FCO).

Example:
See an extensive example of the CALC commands in CALC:LIM:CLEar:AUTO[?]

LBSFXX Series True-RMS Power Sensor Programming Guide v1

35

LBSFXX Series True-RMS Power Sensor Programming Guide v1

CALC:LIM:FAIL? or CALCulate[1]:LIMit:FAIL?

Syntax:
Most common form:

CALC:LIM:FAIL?

Long form:
CALCULATE:LIMIT:FAIL?

Description:

This command ANDs the bits of failure count. As a result, this query returns:

e 0if no failures have occurred
o 1 if any failures have occurred.

This command is useful in determining if any failure has occurred. For this command to be function,
CALC:LIM:STAT must be enabled.

Example:
See an extensive example of the CALC commands in CALC:LIM:CLEar:AUTO[?]

On RESET

This value is set to zero upon reset.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

36

LBSFXX Series True-RMS Power Sensor Programming Guide v1
37

CALC:LIM:FCO? or CALCulate[1]:LIMit:FCOunt?

Syntax:
Most common form:

CALC:LIM:FCO?

Long form:
CALCULATELl :LIMIT:FCOUNT?

Description:

This query returns the number of failures counted so far in concert with other CALC settings. The count if
dependent upon CALC:LIM:STAT begin enabled (equal to 1) and the value of CALC:LIM:CLE:AUTO.

Example:
See an extensive example of the CALC commands in CALC:LIM:CLEar:AUTO[?]

Reset:

On reset or power up the counter is set to zero.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
38

CALC:LIM:LOW][?] or :CALCulate[1]:LIMit:LOWer[:DATA][?]

Syntax:
Most common form:
CALC:LIM:LOW <value>
CALC:LIM:LOW?

Long form:
CALCULTATE]l :LIMIT:LOWER:DATA <value>

CALCULTATE]1 :LIMIT:LOWER:DATA?
Description:

The command sets the lower test limit to which the measured value is compared. If the measured value is lower
than this limit, the failure count may be incremented. The values are:

e Minimum value is -150dBm
e Maximum value is +230dBm
e Reset or Default value is -90dBm

Example:
See an extensive example of the CALC commands in CALC:LIM:CLEar:AUTO[?]

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1

CALC:LIM:STAT[?] or CALCulate[1]:LIMit:STATe[?]

Syntax:
Most common form:
CALC:LIM:STAT?
CALC:LIM:STATE < 0|1 >

Long form:
CALCULATE]l :LIMIT:STATE?

CALCULATE1:LIMIT:STATE < 0|1 >
Description:

This setting enables or disables failure counting.

Example:
See an extensive example of the CALC commands in CALC:LIM:CLEar:AUTO[?]

Reset:

Upon reset or power on this is disabled.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

39

LBSFXX Series True-RMS Power Sensor Programming Guide v1
40

CALC:LIM:UPP[?] or CALCulate[1]:LIMit:UPPer:DATA[?]

Syntax:
Most common form:
CALC:LIM:UPP?
CALC:LIM:UPP <value>

Long form:
CALCULATE]l :LIMIT:UPPER:DATA?

CALCULATELl :LIMIT:UPPER:DATA <value>
Description:

The command sets the upper test limit to which the measured value is compared. If the measured value is above
this limit, the failure count may be incremented. The values are:

e Minimum value is -150dBm
e Maximum value is +230dBm
e Reset or Default value is +90dBm

Example:
See an extensive example of the CALC commands in CALC:LIM:CLEar:AUTO[?]

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
41

Calibration

These commands are required by competitive sensors in order to properly zero a power sensor. However,
zeroing is not required with the LBSFxx line of power sensors. These commands are included for compatibility
purposes only and have no effect on the measurement. However, in some cases a value is set. In these cases the
values are tracked.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1

CAL:ZERO:AUTO or CALibration1:ZERO:AUTO

Syntax:

Most common forms:

CAL:ZERO:AUTO?

CAL:ZERO:AUTO < 0|1 >

Long forms:

CALIBRATIONI:ZERO:AUTO?
CALIBRATION1:ZERO:AUTO < 0]1 >

Description:

42

This command is non-functioning. It is included for compatibility purposes only. The value is tracked and

returned but otherwise has no affect.

Examples:

0000013 -
0000014 -
0000015 -
0000016 -
0000017 -
0000018 -
0000019 -
0000020 -
0000021 -
0000022 -
0000023 -~
0000024 -
0000025 -
0000026 -
0000027 -
0000028 —
0000029 -
0000030 -
0000031 -
0000032 -~

LBSFXX Series True-RMS Power Sensor Programming Guide v1

CAL:

CAL:
CAL:

CAL:
CAL:

*RST
CAL:

CAL:
CAL:

CAL:
CAL:

CAL:
CAL:

ZERO:

ZERO:
ZERO:

ZERO:

ZERO:

ZERO:

ZERO:
ZERO:

ZERO:
ZERO:

ZERO:
ZERO:

AUTO?

AUTO O
AUTO?

AUTO 1

AUTO?

AUTO?

AUTO ONCE
AUTO?

AUTO 1
AUTO?

AUTO ONCE
AUTO?

LBSFXX Series True-RMS Power Sensor Programming Guide v1

CAL:ZERO:TYPE or CALibration1:ZERO:TYPE

Syntax:

Most common forms:

CAL:ZERO:TYPE?

CAL:ZERO:TYPE < EXT|INT >

Long forms:

CALIBRATIONI1:ZERO:TYPE?
CALIBRATION1:ZERO:TYPE < EXTERNAL|INTERNAL >

Descriptions:

43

This command is non-functioning. It is included for compatibility purposes only. The value is tracked and

returned but otherwise has no affect. The default value is INT or INTERNAL.

Example:

0000035 - CAL:

ZERO

:TYPE?

0000036 « INT
0000037 - CAL:

ZERO:

TYPE EXT

0000038 - CAL:

ZERO:

TYPE?

0000039 « EXT
0000040 - CAL:

ZERO:

TYPE INT

0000041 - CAL:

ZERO:

TYPE?

0000042 ~ INT
0000043 - *RST

0000044 - CAL:

ZERO:

TYPE?

0000045 « INT

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
44

CAL or CALibration1[:ALL]

Syntax:
Most common forms:
CAL?
CAL

Long forms:
CALIBRATION1:ALL?

CALIBRATIONI1:ALL

Descriptions:

This command is non-functioning. It is included for compatibility purposes only. When queried it always returns
a zero.

Examples:

0000046 - CAL
0000047 - CAL?
0000048 — 0
0000049 - CAL:ALL?
0000050 ~ O
0000051 - CAL:ALL
0000052 - CAL:ALL?
0000053 ~ O

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
45

Format

The format commands control two items. The format (binary or text) and the byte order in the event that the

format of the data is set to binary.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1

FORMat[:READings]:BORDer

Syntax:
Most common forms:

FORM:BORD < NORM|SWAP >
FORM:BORD?

Long forms:
FORMAT:READINGS:BORDER < NORMAL|SWAPPED >

FORMAT:READINGS:BORDER?

Description:

This setting determines the byte ordering of data transferred in binary format.

Example:

The following example demonstrates exercising the command to change the byte ordering.

0000054 — FORM:BORD?

0000055 ~ NORM

0000056 — FORM:BORD SWAP

0000057 - FORM:BORD?

0000058 ~ SWAP

0000059 — FORM:BORD NORM

0000060 — FORM:BORD?

0000061 —~ NORM

0000062 — FORMAT :READINGS:BORDER?
0000063 —~ NORM

0000064 - FORMAT :READINGS:BORDER SWAPPED
0000065 — FORMAT :READINGS:BORDER?
0000066 — SWAP

On Reset:

On reset or power up byte ordering (BORD) is set to NORMAL

Other Notes:

This has no effect if FORM? is set to ASC or ASCII

LBSFXX Series True-RMS Power Sensor Programming Guide v1

46

LBSFXX Series True-RMS Power Sensor Programming Guide v1
47

FORMat[:READings][:DATA]

Syntax:
Most common forms:
FORM < ASC|REAL >
FORM?

Long forms:
FORMAT:READINGS:DATA < ASCII|REAL >

FORMAT:READINGS:DATA?

Description:

This command determines whether the transfer of numeric data is either ASCIl or REAL.

e If set to ASCIl the text format is a number an exponent such as 1.000E+3 (representing 1000) called NR3 in
SCPI. This is sometimes referred to as scientific notation.

e If set to REAL then the data is in a binary form consistent with IEEE 754. This is sometimes referred to as a 64
bit real or a double in some programming languages. Each value is terminated by a line feed (ASCII value of
10).

Examples:
This sequence demonstrates setting the format and retrieving the format.

0000088 — FORMAT :READINGS:DATA?
0000089 ~ AsC

0000090 - FORMAT:READINGS:DATA REAL
0000091 - FORMAT:READINGS:DATA?
0000092 — REAL

0000093 - FORM?

0000094 — REAL

0000095 - FORM ASCII

0000096 - FORM?

0000097 ~ AsSC

On Reset

The format is set so ASCIl on power on and reset.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
48

Initiate

In general, the purpose of the initiate commands is to manage the sensors response to triggering. There are
three possible states:

o |dle state: In this state the sensor will ignore all incoming triggers. The sensor will remain in an idle state
until the measurement process is initiated.

e Active state: Ready to respond to the active trigger. The most common trigger sources are immediate
triggers issued by the sensor (MEAS? or READ? commands) or external triggers.

If the sensor is active, when a trigger arrives the sensor will make the measurement and place resultant
measurement in the outgoing buffer. The sensor then returns to the idle state. It remains in the idle state until:

e The userissues an explicit INIT command
e The userissues an implicit INIT command by sending a MEAS? or READ? command
e The sensor provides a INITIATE command upon completion of a measurement (INIT:CONT = 1)

An important idea to keep in mind is that the initiate commands are considered to be “overlapped”.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
49

INITiate:CONTinuous
INITiate1:CONTinuous
INITiate:CONTinuous:ALL
INITiate1:CONTinuous:ALL
INITiate:CONTinuous:SEQuence
INITiate1:CONTinuous:SEQuence
INITiate:CONTinuous:SEQuencel

INITiate1l:CONTinuous:SEQuencel

Syntax:
Most common forms:

INIT:CONT < 0|1 >
INIT:CONT?

Long forms:

INITIATE:CONTINUOUS < 0|1 >
INITIATEL : CONTINUOUS : SEQUENCEl1 < 0|1 >
INITIATEL : CONTINUOUS:ALL < 0|1 >
INITIATE : CONTINUOUS?

INITIATEL : CONTINUOUS : SEQUENCE1?
INITIATE1 : CONTINUOUS :ALL?

Description:

For this product, all of these commands are identical. These commands cause the sensor to either wait for an
explicate command to initiate a measurement cycle or generate the command internally. When enabled
(INIT:CONT = 1) the sensor generates a continuous stream of INITIATE commands sometimes referred to as free
run. This property can be queried. If INIT:CONT is set to:

1. 0 causes the sensor to remain in an idle state (doing nothing). It waits for the INIT command. When it
receives and INIT command it exits the idle state and starts waits for a trigger.

2. 1 causes the sensor issues an INIT command internally upon completion of a measurement. This causes
the sensor to continuously restart the measurement process. If the trigger source is set to immediate,
the sensor continuously makes measurements.

Examples:

In the following examples INIT:CONT is set (to 1 or 0) and queried using of the various forms of the command.

0000041 — INIT:CONT?
0000042 —~ 0
0000043 - INIT:CONT 1

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1

0000044 — INIT:CONT?

0000045 ~ 1

0000046 — INITIATE:CONTINUOUS?
0000047 ~ 1

0000048 - INITIATE1:CONTINUOUS?
0000049 ~ 1

0000050 — INITIATE1:CONTINUOUS 0
0000051 — INITIATE1:CONTINUOUS?
0000052 ~ O

0000053 - INITIATE1:CONTINUOUS 1
0000054 - INITIATE1:CONTINUOUS?
0000055 ~ 1

On Power Up
INIT:CONT is set to 1 upon power up.

On Reset

INIT:CONT is set to 0 on reset (*RST)

Common Error Messages:

50

If INIT:CONT =1, FETCH? must be used to make a measurement. In the first part of this example below the user

attempts to make a measurement using the READ? (with INIT:CONT = 1). The READ? fails and error messages are

generated. Folowing this, the FETCH? command is used to make a measurement and works quite nicely. Finally,

and INIT is issued (INIT:CONT stil is set to 1). This causes an “INIT ignored” error to be generated by the sensor.

0000092 INIT:CONT 1

0000093 READ?

0000094 timed out

0000095 SYST:ERR?

0000096 -213,"Init ignored"
0000097 SYST:ERR?

0000098 -420, "Query UNTERMINATED"
0000099 FETCH?

0000100 -1.03488405E+01
0000109 INIT

0000110 SYST:ERR?

0000111

-213,"Init ignored"

Other Notes:

Setting INIT:CONT = 1 and TRIG:SOUR = IMMEDITE is the same as free run.

If INIT:CONT = 1 then the INIT command should not be issued. To make a measurement with INIT:CONT = 1 you
need only issue a FETCH? command. If INIT:CONT = 0 you must issue an INIT command to start the

measurement process. Having issued an INIT command, any of the measurement commands (MEAS?, READ? or
FETCH?) can be used. Finally, issuing a MEAS? command causes INIT:CONT to set to 0.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1

51

LBSFXX Series True-RMS Power Sensor Programming Guide v1
52

INITiate[:IMMediate]/nquery/
INITiate1l[:IMMediate]/nquery/
INITiate[:IMMediate]:ALL/nquery/
INITiate1[:IMMediate]:ALL/nquery/
INITiate[:IMMediate]:SEQuence/nquery/
INITiate1[:IMMediate]:SEQuence/nquery/
INITiate[:IMMediate]:SEQuencel/nquery/

INITiatel[:IMMediate]:SEQuencel/nquery/

Syntax:

Most common forms:
INIT

Long forms:
INITIATEL: IMMEDIATE : SEQUENCE1

Description:

This command is issued when INIT:CONT is 0. The command causes the sensor to exit the idle state and begin
waiting for a trigger. If the trigger source is set to immediate a measurement commences upon receipt of this
command.

Examples:

In the example below we see the relationship between INIT:CONT and INIT demonstrated. It also demonstrates
the incorrect way to use INIT. INIT assumes that INIT:CONT = 0. If that is not the case then an “Init ignored” error
is generated.

0000114 -, INIT:CONT?
0000115 ~ 1

0000116 — INIT

0000117 — SYST:ERR?
0000118 ~ -213,"Init ignored"
0000119 - SYST:ERR?
0000120 — +0,"No error"
0000121 - INIT:CONT O
0000122 - INIT

0000123 - FETCH?

0000124 — -1.03615134E+01
0000125 - SYST:ERR?
0000126 — +0,"No error"
0000127 - INIT

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
53

0000128 — READ?
0000129 ~ -1.03532959E+01

Common Error Messages:

As shown in the example, INIT should not be issued when INIT:CONT = 1. In this case the sensor is generating the
INIT commands internally. If an INIT is issued when INIT:CONT = 1 then an “Init ignored” error message is
generated.

Other Notes:

The INIT command can be used with any of the measurement commands (MEAS? READ? or FETCH?). To use this
command INIT:CONT must be set to 0 or OFF. If INIT:CONT =1 and an INIT is issued an 213, "Init
ignored" error is generated.

This command is the same as TRIG:IMM or TRIGGER:IMMEDIATE

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
54

Input
There is a single input command. This command controls the input impedance of the trigger in port.

INPut:TRIGger:IMPedance

Syntax:
Most common forms:

INP:TRIG:IMP < LOW:HIGH >
INP:TRIG: IMP?

Long forms:
INPUT : TRIGGER: IMPEDANCE < LOW|HIGH >
INPUT : TRIGGER : IMPEDANCE?

Description:

This command controls the impedance seen at the trigger in port. It has two values and they are LOW and HIGH.
A setting of LOW causes the trigger input impedance to be 50Q. And a setting of HIGH causes the trigger input
impedance to be 100kQ.

Examples:

In the sequence below we are setting the input impedance low and high.

0000025 - INP:TRIG:IMP?
0000026 ~ HIGH

0000027 - INP:TRIG:IMP LOW
0000028 — INP:TRIG:IMP?
0000029 — LOW

0000030 — INP:TRIG:IMP HIGH

On Reset

After a power up or reset (*RST) the input impedance is set to HIGH by default.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
55

Memory
The memory subsystem is used to store, edit and manage:

3. Frequency dependent offset tables (sometimes referred to as correction tables)
4. Save/Recall registers

The LBSFxx sensors have 10 save/recall registers and 10 frequency dependent offset tables. Each table may
contain up to 80 points of correction. Each point in the table consists of a frequency and a power level value.

The frequency dependent offset tables and registers (or states) are held in non-volatile memory. So, a loss of
power will not cause the sensor to loose save/recall states or correction data settings.

NOTE: The MEM commands use numbers ranging from 0 to 9 for both the tables and registers. The *SAV and
*RCL commands use register numbers ranging from 1 to 10. In other words, MEM commands use a zero based
numbering system and the IEEE 488.2 *SAV and *RCL commands use a one based numbering system.

Most of the MEM commands do not use register numbers, instead they use register names. The exception is the
MEM:STAT:DEF or MEMORY:STATE:DEFINE command. This command allows the user to change the name of a
SAVE/RECALL register. These names are reported in the catalog functions. For this command you must use a
zero based numbering scheme. For example:

5. Save the current state using the command *SAV 5

6. Recall this same state using *RCL 5

7. However, to rename this same register you must issue the following command MEM:STAT:DEF
“REG_5_NAME”, 4 (note the 4 in the command instead of 5)

While this may seem awkward it is necessary for command and software driver compatibility.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
56

MEMory:CATalog:STATe?/qonly/

Syntax:
Most common forms:
MEM: CAT : STAT?
Long forms:
MEMORY : CATALOG : STATE?
Description:

This query returns a catalog of registers. The format of the return string is:
<numeric>,<numeric>,’<string0>,<type>,<size>”,”<stringl>,<type>,<size>”, ..
"<string9>,<type>,<size>”,
The first numeric value is the number of bytes used. The second is number of bytes available. This data is
followed by ten sets of save/recall register information. Each register has three pieces of information. The first is

the name of the state, the second is the type of memory (always be STAT in this case) third is the size of
allocated memory used by the register.

This data is held in non-volatile memory so that resets or power up/down do not affect the save recall registers.
Instead, these registers must be cleared explicitly using SCPI commands such as MEM:CLE < name > where name
is the name of either a register or table.

Example:
In this case we set the command requests a catalog of save/recall registers.

0000053 — MEM:CAT:STAT?

0000054 —

0,2880,"State0,STAT,0", "Statel,STAT,0","State2,STAT,0","State3,STAT,0", "Stated,STAT,0", "State
5,STAT,0","State6,STAT,0","State7,STAT,0", "State8,STAT,0","State9,STAT,0"

Other Notes:

The numbering scheme between *SAV and *RCL are at variance with the memory subsystem’s numbering
system. The memory subsystem uses a zero based (0...9) sequence as shown in the return value above and the
*SAV and *RCL use a 1 based (1...10) sequence.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
57

MEMory:CATalog:TABLe?/qonly/

Syntax:
Command form:
MEM: CAT : TABL?

Long form:
MEMORY : CATALOG : TABLE ?

Description:

This query only command returns a catalog of the saved frequency correction tables. The format of the return

string is:

<numeric>,<numeric>,”<string0>,<type>,<size>”,”<stringl>,<type>,<size>”, ..
"<string9>,<type>,<size>”,

The first numeric value is the number of bytes used. The second is the number of bytes available. Each

subsequent string contains three pieces of information. The first is the name of the table, the second is the type
of memory (always be TABL in this case) third is the size of allocated memory used by the table.

This data is held in non-volatile memory so that resets or power up/down do not affect the tables. Instead, these
tables must be cleared explicitly using SCPI commands such as MEM:CLE < name > where name is the name of
either a register or table.

Example:
0000005 —. MEM:CAT:TABL?

0000006 —
0,4800,"CUSTOM A,TABL,0","CUSTOM B,TABL,0","CUSTOM C,TABL,0","CUSTOM D,TABL,0","CUSTOM E, TABL
,0","CUSTOM_F,TABL,0","CUSTOM G,TABL,0","CUSTOM H,TABL,0","CUSTOM I,TABL,0","CUSTOM J,6TABL,0"

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
58

MEMory:CATalog[:ALL]?/qonly/

Syntax:
Most common form:

MEM:CAT:ALL?

Long forms:
MEMORY : CATALOG : ALL?

Description:

This query only command returns a catalog of the saved registers and frequency correction tables. The format of
the return string is:
<numeric>,<numeric>, "<string0>,<type>,<size>”,”<stringl>,<type>,<size>”,

"<string9>,<type>,<size>”,

The first numeric value is the number of bytes used. The second is total number of bytes available. This is
followed by twenty sets of definitions. In each case the string contains the name of the register or table, the
type shows the type of memory (should be STAT or TABL) and the number of bytes currently used by each state
or table.

This data is held in non-volatile memory so that neither resets nor power up/down affects the state or tables.
Instead, these states and tables must be cleared explicitly by a command such as MEM:CLE < name > where
name is the name of either a register or table

Examples:

0000016 — MEM:CAT:ALL?

0000017 —

288,7680, "CUSTOM A, TABL,0","CUSTOM B,TABL,0","CUSTOM C,TABL,0","CUSTOM D,TABL,0","CUSTOM E,TA
BL,0","CUSTOM F,TABL,0","CUSTOM G,TABL,0","CUSTOM H,TABL,0","CUSTOM I,TABL,0","CUSTOM J,TABL,
0","State0,STAT,288","Statel,STAT,0","State2,STAT,0", "State3,STAT,0","Stated,STAT,0","State5,
STAT,0","State6,STAT,0","State7,STAT,0", "State8,STAT,0","State9,STAT,0"

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
59

MEMory:CLEar:TABLe/nquery/

Syntax:
Most common form:
MEM: CLE : TABL

Long form:
MEMORY : CLEAR : TABLE

Description:

This command clears the currently selected table. If a table isn’t selected a 221 “Settings conflict” error is
generated.

Examples:

In this sequence we first catalog the tables. Note that CUSTOM_B contains information. We ask the sensor
which table is selected. Initially no table is selected (hence a null string is returned). Then we issue the command
to clear the currently selected table. This of course generates an error. Then we select CUSTOM_B and issue the
command to clear the selected table. This works correctly as shown the size of CUSTOM_B is reduced from 30 to
0.

0000003 - MEM:CAT:TABL?

0000004 -~

30,4800, "JON,TABL,0", "CUSTOM B, TABL, 30", "CUSTOM C,TABL, o", "CUSTOM D, TABL, o", "CUSTOM E, TABL, o"
,"CUSTOM_F, TABL, o", "CUSTOM G, TABL, o", "CUSTOM H, TABL, o", "CUSTOM_ I, TABL, o", "CUSTOM_J,TABL, o"
0000005 - MEM:TABL:SEL?

0000006 ~

0000007 - MEM:CLE:TABL

0000008 — SYST:ERR?

0000009 —~ -221,"Settings conflict"

0000010 — SYST:ERR?

0000011 — +0,"No error"

0000012 . MEM:TABL:SEL "CUSTOM B"

0000013 . MEM:CLE:TABL

0000014 -, SYST:ERR?

0000015 — +0,"No error"

0000016 - MEM:CAT:TABL?

0000017 -~

0,4800, "JON, TABL,0" , "CUSTOM B, TABL, 0", "CUSTOM_C, TABL,0","CUSTOM D,TABL,0","CUSTOM E,TABL,0","
CUSTOM_F,TABL,0","CUSTOM G,TABL,0","CUSTOM H,TABL,0","CUSTOM I,TABL,0","CUSTOM J,TABL,0"

Common Error Messages:

If no table is selected error 221 “Settings conflict” is generated

Other Notes:

Cleared data is not recoverable.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
60

MEMory:CLEar[:NAME]/nquery/

Syntax:

Most common forms:
MEM:CLE <name>

Long forms:
MEMORY : CLEAR :NAME <name>

Description:

This command clears the data associated with a named table or state. If a state is named then the state is
cleared. If the table is named, the table is cleared.

Examples:

In this example a table is cleared then a state is cleared. The state and the table are cleared using the default
names as shown in the MEM:CAT:ALL? command.

0000014 — MEM:CAT:ALL?

0000015 —

0,7680,"CUSTOM A, TABL,0","CUSTOM B,TABL,0","CUSTOM C,TABL,0","CUSTOM D,TABL,0","CUSTOM E, TABL
,0","CUSTOM_F,TABL,0","CUSTOM G,TABL,0","CUSTOM H,TABL,0","CUSTOM I,TABL,0","CUSTOM J,TABL,0"
,"S¥EEE0, STAT, 0", "Statel,STAT,0", "State2,STAT, 0", "State3,STAT,0", "Stated, STAT,0", "State5, STAT
,0","State6,STAT,0","State7,STAT,0", "State8,STAT,0","State9,STAT,0"

0000016 — MEM:CLE "CUSTOM B"

0000017 — MEM:CLE "SEate("

Other Notes:

Once cleared, a table or state is not recoverable.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
61

MEMory:FREE:STATe?/qonly/

Syntax:
Most common forms:
MEM: FREE : STAT?

Long forms:
MEMORY : FREE : STATE?

Description:

This query returns the total memory available and the memory used by the save/recall registers. Each register
uses 288 bytes.

Examples:

0000210 - MEM:FREE:STAT?
0000211 - 2880,288

0000212 - MEMORY:FREE:STATE?
0000213 -~ 2880,288

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1

MEMory:FREE:TABLe?/qonly/

Syntax:
Most common forms:
MEM: FREE : TABL?

Long forms:
MEMORY : FREE : TABLE?

Description:

This query returns the total memory available and memory used in bytes.

Examples:
The following sequence demonstrates this command.

0000205 - MEM:FREE:TABL?
0000206 - 4800,0

0000207 — MEMORY:FREE:TABLE?
0000208 - 4800,0

LBSFXX Series True-RMS Power Sensor Programming Guide v1

62

LBSFXX Series True-RMS Power Sensor Programming Guide v1
63
MEMory:FREE[:ALL]?/qonly/

Syntax:
Most common forms:

Long forms:

Description:

This query returns the total memory available for both the registers and tables and the total memory used by
both registers and tables.

Examples:

In this sequence the command is exercised and the return values are shown.

0000022 - MEM:FREE:ALL?
0000023 ~ 7680,576
0000024 ~ timed out
0000025 - MEM:FREE:ALL?
0000026 — 7680,576
0000027 — MEM:FREE:ALL?
0000028 — 7680,576
0000029 - MEM:FREE?
0000030 —~ 7680,576
0000031 - MEMORY:FREE?
0000032 ~ 7680,576

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
64

MEMory:NSTates?/qonly/

Syntax:
Most common forms:
MEM:NST?

Long forms:
MEMORY : NSTATES ?

Description:

This command returns the number of states available. Since the number of states available is always 10, this
command always returns 10.

Examples:

0000077 — MEMORY :NSTATES?
0000078 -~ +10

0000079 - MEM:NST?
0000080 -~ +10

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
65

MEMory:STATe:CATalog?/qonly/

Syntax:

Most common forms:
MEM: STAT : CAT?

Long forms:
MEMORY : STATE : CATALOG?

Description:

This command lists the name of the save/recall states in order from the first state to the last state. Note that
*SAV and *RCL use one based register numbers (1..10) while most other commands use 0 based (0..9) register
numbers.

Examples:
0000083 . MEM:STAT:CAT?
0000084 —

"State0","Statel","State2","State3","Stated","State5","State6","State7","State8","State9"
0000088 — MEMORY:STATE :CATALOG?
0000089 —

"StateO","Statel","State2","State3","Stated","State5","State6","State7","State8","State9"

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
66

MEMory:STATe:DEFine

Syntax:
Most common forms:

MEM:STAT:DEF <string>, <number>
MEM:STAT:DEF? <string>

Long forms:
MEMORY : STATE : DEFINE <string>, <number>
MEMORY : STATE : DEFINE? <string>

Description:

This command either sets the association between a name and a register or state number or recalls the numeric
half of the association given the name. In essence, this command names a numbered state. Or it recalls the
number of a named state. The state numbers for this and most other commands is a 0 based (0...9) numbering
system. However, the *SAV and *RCL commands that use a 1 based numbering system (1...10).

Examples:

In this example the state catalog is first listed. Then we make a change to the name of the fifth state (number 4)
and then catalog the states again.

0000200 — MEM:CAT:STAT?

0000201 —

288,2880, "SETUP33, STAT, 288", "Statel,STAT,0" ,"STATE_1,STAT,0","State3,STAT,0","Stated, STAT,0",
"State5,STAT,0","State6,STAT,0", "State7,STAT,0","State8,STAT,0", "State9, STAT,0"

0000202 . MEM:STAT:DEF "NEW _NAME 4", 4

0000203 — MEM:CAT:STAT?

0000204

288,2880, "SETUP33, STAT, 288", "Statel,STAT,0" ,"STATE_1,STAT,0","State3,STAT,0","NEW_NAME 4,STAT
,0","State5,STAT,0","State6,STAT,0","State7,STAT,0", "State8,STAT,0", "State9,STAT,0""

Common Error Messages:

If you rename a state using a state number that is outside the values of 0 to 9 you will get a 222 “Data out of
range” error message.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
67

MEMory:TABLe:FREQuency

Syntax:

Most common forms:

MEM:TABL: FREQ <frequency>,<frequency>,<frequency>, .. <frequency>

Long forms:

MEMORY : TABLE : FREQUENCY <frequency>,<frequency>,<frequency>, .. <frequency>
Description:

This command allows the user to enter a sorted frequency list into the currently selected table. The previous
values in the selected table are cleared. As noted, the list of frequencies must be entered in ascending (sorted)
order.

If a signal is measured, and the frequency as set by the user is outside the range of points the sensor selects the
closest point. So if the set frequency is below the lowest point in the table, then sensor uses the first point in the
table. If the frequency set frequency is above the last (highest) point in the table, then the last point will be
used.

When entering the frequencies, the frequency can be entered without any units. In this case the units are
assumed to be Hz. However you can enter the values with the units shown below. Also note, as with commands,
these entries are case insensitive.

8. Hz

9. kHz
10. MHz
11. GHz

In any case, frequencies are truncated (not rounded) to the closest kHz.

Examples:

In this example the number of points is queried. The number returned is “+NAN”. This indicates a table has not
been selected as shown in subsequent commands. We eventually select a table (“CUSTOM_B”) and query the
number of frequency points again. At this point the value of zero is returned. Then we proceed to add frequency
points. These points are checked. Then the same number of gain points are added and then checked.

0000025 - MEM:TABL:FREQ:POIN?

0000026 ~ +NAN

0000027 - MEM:TABL:SEL?

0000028 -

0000029 - MEM:CAT:TABL?

0000030 -
0,4800,"CUSTOM_A,TABL,0","CUSTOM B,TABL,0","CUSTOM C,TABL,0","CUSTOM D,TABL,0", "CUSTOM_E, TABL
,0","CUSTOM_F,TABL,0","CUSTOM G,TABL,0","CUSTOM H,TABL,0","CUSTOM I,TABL,O0","CUSTOM J,TABL,0"
0000031 — MEM:TABL:SEL "CUSTOM B"

0000032 - MEM:TABL:FREQ:POIN?

0000033 —~ +0.000000E+00

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1

0000034 — MEM:TABL:FREQ 500MHZ,1GHZ,2GHZ,3GHZ

0000035 _ MEM:TABL:FREQ?

0000036 — 5.000000E+08,1.000000E+09,2.000000E+09,3.000000E+09
0000037 — MEM:TABL:FREQ: POIN?

0000038 — +4.000000E+00

0000039 — MEM:TABL:GAIN 50.0, 100.0,150.0, 100.0

0000040 — MEM:TABL:GAIN:POIN?

0000041 — +4.000000E+00

0000042 — MEM:TABL:GAIN?

0000043 — 5.000000e+01,1.000000e+02,1.500000e+02,1.000000e+02

Common Error Messages:

12. Attempting to add more than 80 points results in error -108, “Parameter not allowed”

13. If the frequencies are not entered in ascending, this results in error -220, Parameter error: Frequency list

must be in ascending order”
14. If a table has not been selected (MEM:TABL:SEL) then error -221 “Settings conflict” results

15. Any attempt to enter frequencies outside the allowable range (1kHz to 1000GHz) results in a -222 “Data

out of range” error.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
69

MEMory:TABLe:FREQuency:POINts?/qonly/

Syntax:
Most common forms:
MEM: TABL : FREQ : POIN?

Long forms:
MEMORY : TABLE : FREQUENCY : POINTS?

Description:

This command returns the number of frequency points in the currently selected table. If a table is not selected it
returns +NAN.

Examples:

In this example the number of points is queried. The number returned is “+NAN”. This indicates a table has not
been selected as shown in subsequent commands. We eventually select a table (“CUSTOM_B”) and query the
number of frequency points again. Now a value of zero is returned. Then we proceed to add frequency points,
gain points and rechecked the count in each case.

0000025 — MEM:TABL:FREQ: POIN?

0000026 — +NAN

0000027 — MEM: TABL: SEL?

0000028 —

0000029 — MEM:CAT:TABL?

0000030 —

0,4800, "CUSTOM A, TABL,0","CUSTOM B,TABL,0","CUSTOM C,TABL,0","CUSTOM D,TABL,0","CUSTOM E, TABL
,0","CUSTOM_F,TABL,0","CUSTOM G,TABL,0","CUSTOM H,TABL,0","CUSTOM I,TABL,0","CUSTOM J,TABL,0"
0000031 — MEM:TABL:SEL "CUSTOM B"

0000032 — MEM:TABL:FREQ: POIN?

0000033 — +0.000000E+00

0000034 — MEM:TABL:FREQ 500MHZ,1GHZ,2GHZ,3GHZ

0000035 — MEM:TABL:FREQ?

0000036 — 5.000000E+08,1.000000E+09,2.000000E+09,3.000000E+09
0000037 — MEM:TABL:FREQ: POIN?

0000038 — +4.000000E+00

0000039 — MEM:TABL:GAIN 50.0, 100.0,150.0, 100.0

0000040 — MEM:TABL:GAIN:POIN?

0000041 — +4.000000E+00

0000042 — MEM:TABL:GAIN?

0000043 — 5.000000e+01,1.000000e+02,1.500000e+02,1.000000e+02

1

Common Error Messages:

16. Attempting to add more than 80 points result in a -108, “Parameter not allowed” error

17. If the frequencies are not entered in ascending results in error -220

18. Any attempt to enter frequencies outside the allowable range (1kHz to 1000GHz) results in a -222 “Data
out of range” error.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
70

MEMory:TABLe:GAIN[:MAGNitude]

Syntax:
Most common forms:
MEM:TABL:GAIN <gain>,<gain>,<gain> .. <gain>
MEM: TABL: GAIN?

Long forms:
MEMORY : TABLE : GAIN:MAGNITUDE <gain>,<gain>,<gain> .. <gain>
MEMORY : TABLE : GAIN : MAGNITUDE?

Description:

This command allows the user to enter or query a sequence of offsets. These offsets are associated with the
corresponding frequency, by order, in currently selected table. Any previous magnitude values in the selected
table are cleared. All gain values are in percent.

Note that FDO offsets describe the system response. As a result these offsets be removed or subtracted from
the uncorrected measured value to arrive at the corrected value.

For example, a system with a gain of 50% is interpreted as a 3.01dB loss. More correctly, the system response is
-3.01dB (note the sign). This means that to arrive at the corrected value we must subtract -3.01dB from the
uncorrected value.

So, assume we measured an uncorrected value of +10dBm. This uncorrected measured value includes the
system response. To correct this value the system response must be removed or subtracted from the
uncorrected value. The system response (which is -3.01dB or a 3.01dB loss) must be subtracted from +10dBm.
This correction yields a corrected value of 13.01dBm. The arithmetic is as follows (note signs):

+10dBm - (-3.01dB) =
+10dBm + 3dB = 13.0dBm.

If a signal is measured, and the frequency selected by the user is outside the range of FDO frequency points, the
sensor selects the closest point. So if selected frequency is below the lowest point in the table, the sensor uses
the first point in the table. Conversely, if the selected frequency is above the last (highest) point in the table,
then the last point will be used.

Simple, straight line interpolation (frequency and Watts) is used for signals whose selected frequency falls within
the bounds of FDO frequency points.

Again, when entering the correction the value units are assumed to be in percent. And the values reflect the
system response. The maximum range of correction is 1 per cent to 150 per cent. To calculate or convert
between offset (percent or dB) use on of the following:

System response in dB = 10 * Logio (Offset in percent/100.0)
System response offset in per cent = 100.0 * 10.0/ffsetin d8/10.0

You may find the following table to be a useful crosscheck:

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
71

Percent dB
1 -20.0dB

10 -10.0dB

50 -3.01dB

75 -1.25dB
100 +0.00dB
125 +0.97dB
150 +1.76dB

The correction is applied in the following manner (dB):
corrected valueg,m = uncorrected valuegpm - FDOgbm

For example, assume a value of -20.0dBm was measured before FDO correction. If FDO value of 50% would
cause the -3.01dB of correction to be subtracted from the measured value. So, that -20dBm would be reported
as -16.99dBm. In the same way, an FDO of 150% would cause +1.76 to be subtracted from -20dBm resulting in a
corrected value as -21.76dBm.

Examples:

0000025 - MEM:TABL:FREQ:POIN?

0000026 — +NAN

0000027 - MEM:TABL:SEL?

0000028 —

0000029 - MEM:CAT:TABL?

0000030 —

0,4800,"CUSTOM A,TABL,0","CUSTOM B,TABL,0","CUSTOM C,TABL,0","CUSTOM D,TABL,0","CUSTOM E, TABL
,0","CUSTOM_F,TABL,0","CUSTOM G,TABL,0","CUSTOM H,TABL,0","CUSTOM I,TABL,0","CUSTOM J,TABL,0"
0000031 - MEM:TABL:SEL "CUSTOM B"

0000032 — MEM:TABL:FREQ:POIN?

0000033 —~ +0.000000E+00

0000034 — MEM:TABL:FREQ 500MHZ,1GHZ,2GHZ, 3GHZ

0000035 — MEM:TABL:FREQ?

0000036 —~ 5.000000E+08,1.000000E+09,2.000000E+09,3.000000E+09
0000037 — MEM:TABL:FREQ: POIN?

0000038 — +4.000000E+00

0000039 - MEM:TABL:GAIN 50.0, 100.0,150.0, 100.0

0000040 — MEM:TABL:GAIN:POIN?

0000041 — +4.000000E+00

0000042 . MEM:TABL:GAIN?

0000043 — 5.000000e+01,1.000000e+02,1.500000e+02,1.000000e+02

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
72

MEMory:TABLe:GAIN[:MAGNitude]:POINts?/qonly/

Syntax:
Most common forms:
MEM: TABL: GAIN: POIN?

Long forms:
MEMORY : TABLE : GAIN : MAGNITUE : POINTS?

Description:

This command returns the number of points in the table currently selected for editing (using the MEM: TABL: SEL
command).

Examples:

0000025 — MEM:TABL:FREQ: POIN?

0000026 — +NAN

0000027 — MEM:TABL:SEL?

0000028

0000029 — MEM:CAT:TABL?

0000030 —

0,4800, "CUSTOM A,TABL,0","CUSTOM B,TABL,0","CUSTOM C,TABL,0","CUSTOM D,TABL,0","CUSTOM E, TABL
,0","CUSTOM F,TABL,0","CUSTOM G,TABL,0","CUSTOM H,TABL,0","CUSTOM I,TABL,0","CUSTOM J,TABL,0"
0000031 -, MEM:TABL:SEL "CUSTOM B"

0000032 — MEM:TABL:FREQ: POIN?

0000033 — +0.000000E+00

0000034 — MEM:TABL:FREQ 500MHZ,1GHZ,2GHZ, 3GHZ

0000035 — MEM:TABL:FREQ?

0000036 — 5.000000E+08,1.000000E+09,2.000000E+09,3.000000E+09
0000037 — MEM:TABL:FREQ: POIN?

0000038 — +4.000000E+00

0000039 — MEM:TABL:GAIN 50.0, 100.0,150.0, 100.0

0000040 — MEM:TABL:GAIN:POIN?

0000041 — +4.000000E+00

0000042 — MEM:TABL:GAIN?

0000043 — 5.000000e+01,1.000000e+02,1.500000e+02,1.000000e+02

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
73

MEMory:TABLe:MOVE/nquery/

Syntax:
Most common form:
MEM:TABL:MOVE <existing table name>,<new table name>

Long form:
MEMORY : TABLE : MOVE <existing table name>,<new table name>

Description:
This command is used to rename a FDO (frequency dependent offset) table.

Examples:

0000065 — MEM: : CAT: TABL?

0000066 —

24,4800, "CUSTOM A,TABL,0","CUSTOM B,TABL,24","CUSTOM C,TABL,0","CUSTOM D,TABL,0","CUSTOM E,TA
BL,0","CUSTOM F,TABL,0","CUSTOM G,TABL,0","CUSTOM H,TABL,0","CUSTOM I,TABL,0","CUSTOM J,TABL,
0"

0000067 — MEM:TABL:MOVE "CUSTOM B", "CUSTOM Zz"

0000068 — MEM: : CAT: TABL?

0000069 —

24,4800, "CUSTOM A,TABL,0","CUSTOM Z,TABL,24","CUSTOM C,TABL,0","CUSTOM D,TABL,0","CUSTOM E,TA
BL,0","CUSTOM F,TABL,0","CUSTOM G,TABL,0","CUSTOM H,TABL,0","CUSTOM I,TABL,0","CUSTOM J,TABL,
0"

0000070 - MEM:TABL:MOVE "CUSTOM Z","CUSTOM B"

0000071 — MEM: : CAT: TABL?

0000072 —

24,4800, "CUSTOM A,TABL,0","CUSTOM B,TABL,24","CUSTOM C,TABL,0","CUSTOM D,TABL,0","CUSTOM E,TA
BL,0","CUSTOM F,TABL,0","CUSTOM G,TABL,0","CUSTOM H,TABL,0","CUSTOM I,TABL,0","CUSTOM J,TABL,
0"

Common Error Messages:

19. If either table name is invalid this results in error -224, “lllegal parameter value”
20. If the first parameter does not match and existing table the error -226, “File name not found is issued.
21. If the second parameter matches an existing table then error -257,”File name error” is issued.

Other Notes:

The first parameter must match and existing file exactly. File names must consist of only upper and lower case
letters (A...Z, a...z), the numbers 0...9 and the underscore. No other characters are permitted.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
74

MEMory:TABLe:SELect

Syntax:

Most common forms:
MEM:TABL:SEL <table name>
MEM: TABL: SEL?

Long forms:
MEMORY : TABLE : SELECT <table name>
MEMORY : TABLE : SELECT?

Description:

This command selects an FDO (frequency dependent offset) table for editing using the memory commands.

Examples:

0000077 — MEM: : CAT: TABL?

0000078 —

24,4800, "CUSTOM A,TABL,0","CUSTOM B,TABL,24","CUSTOM C,TABL,0","CUSTOM D,TABL,0","CUSTOM E,TA
BL,0","CUSTOM F,TABL,0","CUSTOM G,TABL,0","CUSTOM H,TABL,0","CUSTOM I,TABL,0","CUSTOM J,TABL,
0"

0000079 — MEM: TABL: SEL?

0000080 —

0000081 . MEM:TABL:SEL "CUSTOM B"

0000082 — MEM:TABL: SEL?

0000083 — CUSTOM B

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
75

Output

The output commands are used to control recorder and trigger outputs. When recorder out is enabled, the
sensor places DC voltage on the trigger out (TO) port that is proportional to the power in Watts. Trigger out
sends a trigger out the TO port any time a measurement is made and trigger out is enabled. Since recorder out
and trigger out share the same physical port they are by definition mutually exclusive.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
76

OUTPut:RECorder:FEED

OUTPut:RECorder1:FEED

Syntax:
Most common forms:

OUTP:REC:FEED?
OUTP:REC:FEED CALC

Long forms:

OUTPUT : RECORDER : FEED?
OUTPUT : RECORDER : FEED CACL
OUTPUT : RECORDER : FEED CACL1

Description:

This command is included to support command compatibility with other sensors that support recorder out. It
serves no additional purpose. The command takes and single parameter and that parameter must be CALC or
CALC1 which are equivalent.

Examples:

This example shows setting and getting the parameter.
0000003 - OUTP:REC:FEED?

0000004 — CALC

0000005 — OUTP:REC:FEED CALC

0000006 — OUTP:REC:FEED CALC1

0000007 — OUTP:REC:FEED?
0000008 ~ CALC1

On Reset

The parameter must always be CALC or CALC1. These values are equivalent.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
77

OUTPut:RECorder:FILTer

OUTPut:RECorderl:FiLTer

Syntax:
Most common forms:

OUTP:REC:FILT <value>
OUTP:REC:FILT?

Long forms:
OUTPUT : RECORDER: FILTER <value>
OUTPUT : RECORDER1 : FILTER <value>
OUTPUT : RECORDER: FILTER?

OUTPUT : RECORDERI1 : FILTER?

Description:

This command sets bandwidth of recorder out. Valid values for the bandwidth are between 0.001HZ to 32Hz
inclusive. The default value is 32Hz. The maximum output value is 1V into a 1kOhm load (2.0V into an open). The
filter is used to affect the reported value. The voltage at the output follows the reported value.

Example:

This is a long example. The setup for this example consists of connecting the sensor to a 1GHz RF source with a
power level of 10.0dBm. During the example the power level should be changed between +10dBm and 0dBm. A
DC voltmeter should be connected to the trigger output (recorder out utilizes the trigger output connection).
The output can be considered unloaded since the impedance of the voltmeter is about >1IMOhm.

The sensor is setup accomplished using the SPCI commands shown below. Finally, power is decreased by 3dB
and continuous measurements are initiated simultaneously. The resultant measurements are about 1 second
apart. This can be done in the interactive |10 by:

22. Setting the latency to 1 sec
23. Sending one FETC? command
24. Then simultaneously
o Checking continuous
o Decrease the source 1GHz power level by 3dB simultaneously

After about 10 measurements, uncheck continuous to halt measurements. Then change the filter to 32Hz and
repeat the process. In the first case using 0.1Hz, the measured power and measured voltage (not shown) start
at 10dBm and 2Volts (open circuit). When the power drops by 3dB the reported value (resulting from
continuous FETCH?) slowly decreases as does the voltage on the meter.

In the second case where the filter is set to 32Hz the change occurs rapidly.

0000082 - *RST

0000083 - FREQ?

0000084 — +5.00000000E+07
0000085 - FREQ 1GHZ
0000086 — FREQ?

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
78

0000087 ~ +1.00000000E+09
0000088 — INIT:CONT?
0000089 ~ O

0000090 - INIT:CONT 1
0000091 - FETC?

0000092 -~ +1.00393940E+01
0000093 - OUTP:REC:FILT?
0000094 — 3.200000E+01
0000095 - OUTP:REC:FILT 0.1
0000096 — OUTP:REC:FILT?
0000097 ~ 1.000000E-01
0000098 - OUTP:REC:LIM:LOW?
0000099 ~ -3.300000E+01
0000100 — OUTP:REC:LIM:LOW 0.0
0000101 - OUTP:REC:LIM:LOW?
0000102 ~ +0.000000E+00
0000103 — OUTP:REC:LIM:UPP?
0000104 ~ +2.000000E+01
0000105 - OUTP:REC:LIM:UPP 10.0
0000106 — OUTP:REC:LIM:UPP?
0000107 —~ +1.000000E+01
0000108 — OUTP:REC:STAT?
0000109 ~ O

0000110 — OUTP:REC:STAT 1
0000111 - FETC?

0000112 — +9.96684595E+00
0000113 - FETC?

0000114 — +9.97565169E+00

The source and sensor frequency are set to FREQ = 1GHz. Sensor INIT:CONT = 1 is on so we can
produce a measurement with just a FETC?, We've ensured source power level is +10dBm. This
should produce 2VDC unloaded or 1VDC loaded at the TO (RO) output on the back of the sensor.

Set power level to +10dBm and wait 10 seconds. The no-load voltage should be 2VDC with the
power level at +10dBm.

0000115 - FETC?
0000116 ~ +9.98380112E+00

Set the power level to 0dBm. Wait 10 seconds. The voltage should be close to 0.0VDC. And the
power level should be about 0.0dBm.

0000117 - FETC?
0000118 ~ -1.26547706E-01

Now raise and lower the power level 10dB. Watch the RO voltage as you do so. You should see
the voltage take several seconds to settle at either 0.0VDC or 2.0VDC. I've set the latency
on the Interactive IO to either 0.5 or 1.0 seconds. To get a series of measurements with time
between them. I check "Continuous" quickly after changing the power level. With this filter
setting, after about 10 seconds I uncheck continuous.

In this case I've changed the source power level from +10.0dBm to 0.0dBm and very quickly

checked "Continuous". At the end I unchecked "Continuous". I observed the voltmeter change
also.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
79

0000411 - FETC?
0000412 ~ -9.63773193E-02
0000413 - FETC?
0000414 -~ -9.70746011E-02
0000415 - FETC?
0000416 — -9.72791906E-02
0000417 - FETC?
0000418 —~ +6.04672479E+00
0000419 - FETC?
0000420 ~ +8.35610990E+00
0000421 - FETC?
0000422 - +9.21085784E+00
0000423 - FETC?
0000424 —~ +9.60174160E+00
0000425 - FETC?
0000426 ~ +9.79398714E+00
0000427 - FETC?
0000428 — +9.89131474E+00
0000429 - FETC?
0000430 — +9.94044006E+00
0000431 - FETC?
0000432 —~ +9.96530503E+00
0000433 - FETC?
0000434 ~ +9.97743852E+00

You can see the power level settled after several seconds. Lowering the source power again...

0000435 - FETC?
0000436 —~ +9.98264508E+00
0000437 - FETC?
0000438 — +8.01688527E+00
0000439 - FETC?
0000440 — +5.78197966E+00
0000441 - FETC?
0000442 — +3.88227759E+00
0000443 - FETC?
0000444 — +2.40653472E+00
0000445 - FETC?
0000446 — +1.37443741E+00
0000447 - FETC?
0000448 —~ +7.16433882E-01
0000449 - FETC?
0000450 ~ +3.30276201E-01
0000451 - FETC?
0000452 —~ +1.17082104E-01
0000453 - FETC?
0000454 ~ +4.15967830E-03
0000455 - FETC?
0000456 —~ -5.38437541E-02
0000457 - FETC?
0000458 —~ -8.21761081E-02
0000459 - FETC?
0000460 ~ -9.49067693E-02

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
80

0000461 - FETC?
0000462 ~ -9.97843608E-02

Again, it took several seconds for the power level to settle. Now change the filter to 32Hz.

0000463 — OUTP:REC:FILT 32.0
0000464 - OUTP:REC:FILT?
0000465 — 3.200000E+01

0000470 - FETC?
0000471 ~ -1.01244000E-01
0000472 - FETC?
0000473 ~ +1.00062548E+01

Notice, in this case (filter set to 32Hz) the measured power goes from 0.0dBm to 10.0dBm very
quickly.

On Reset

The filter value is set to 32Hz after a *RST.

Other Notes:

The range for the filter is 0.001Hz to 32Hz

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
81

OUTPut:RECorder:LIMit:LOWer
OUTPut:RECorder1:LIMit:LOWer
OUTPut:RECorder:LIMit:UPPer

OUTPut:RECorder1:LIMit:UPPer

Lower and upper limits of Recorder output operate as a pair, so it is fitting that they are covered as a pair in this
section.

Syntax:
Most common forms:
OUTP:REC:LIM:LOW <value>
OUTP:REC:LIM:UPP <value>
OUTP:REC:LIM:LOW?
OUTP:REC:LIM:UPP?

Long forms:

OUTPUT : RECORDER : LIMIT : LOWER <value>
OUTPUT : RECORDER : LIMIT : UPPER <value>
OUTPUT : RECORDER : LIMIT : LOWER?

OUTPUT : RECORDER : LIMIT : UPPER?

OUTPUT : RECORDER1 : LIMIT : LOWER <value>
OUTPUT : RECORDER1 : LIMIT: UPPER <value>
OUTPUT : RECORDER1 : LIMIT : LOWER?

OUTPUT : RECORDER1 : LIMIT : UPPER?

Description:

The commands set the power measurement boundaries associated with recorder output voltage. The voltage
output is a straight line interpolation of the lower and upper limits in Watts. The voltage out is between 0VDC
and 1VDC into a 1kOhm load. If no load is attached then the voltage is twice this value or between OVDC and
2VDC. An open can be approximated nicely with most DC voltmeters (high impedance).

An example calculation is shown below. The voltages are reported assuming the recorder output is properly
loaded (1kOhm load). Note that all calculations use Watts.

Limiower = 1MW (or +0.0dBm)
Limypper = 10mW (or +10.0dBm)
Conditions:

25. Measured power between 1ImW and 10mW
0 Vout = (Pmeas - Limiower)/(Limupper - LiMiower)
o So that for 5mW (or +6.99dBm):

Vout= (5.0 — 1.0)/(10.0 — 1.0) = 0.444VDC into 1kOhm

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1

82

If the voltage was measured across an open (such as a voltmeter) the voltage will be twice the
calculated value or 0.888VDC

26. Measured power below Limiower or IMW: Vo, = 0.0VDC
27. Measured power above Limypper or 10mW: Vo = 1.0VDC (or 2.0VDC into an open)

Example:

In this example we connect the sensor to an RF source and set the power levels as measured below. A DC

voltmeter was connected to the TO or recorder output on the back of the sensor. The calculations for the

voltages were done exactly has shown earlier in this section.

0000487 — *RST

0000488 — OUTP:REC:FILT?
0000489 ~ 3.200000E+01
0000490 — OUTP:REC:LIM:LOW?
0000491 ~ -3.300000E+01
0000492 — OUTP:REC:LIM:LOW 0.0
0000493 - OUTP:REC:LIM:UPP?
0000494 —~ +2.000000E+01
0000495 —» OUTP:REC:LIM:UPP 10.0
0000496 - OUTP:REC:LIM:LOW?
0000497 «~ +0.000000E+00
0000498 — OUTP:REC:LIM:UPP?
0000499 «~ +1.000000E+01
0000500 — INIT:CONT?
0000501 « O

0000502 — INIT:CONT 1
0000503 —» FETCH?

0000504 ~ +6.92778023E+00
0000505 — OUTP:REC:STAT?
0000506 « O

0000507 — OUTP:REC:STAT 1
0000508 — FETCH?

0000509 « +6.96345236E+00

Voltage measured using voltmeter was
+6.96345236E+00 -> 4.969mW
Calculated voltage =
0000510 — FETCH?
0000511 « +4.03776174E+00

Voltage measured using voltmeter was
+4.03776174E+00 -> 2.534mW

Calculated voltage =

On Reset

(4.969 - 1)/ (10.

(2.534 - 1)/ (10.

0

0

.891vDC.

1) = 0.441VDC into 1kOhm or

0.882VDC into an open (as measured)

.344VDC

1) = 0.170VDC into 1kOhm or

0.340VDC into an open (as measured)

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1

The lower limit is set to -30.0dBm and the upper limit is set to +20.0dBm.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

83

LBSFXX Series True-RMS Power Sensor Programming Guide v1

OUTPut:RECorder:STATe

OUTPut:RECorder1:STATe

Syntax:
Most common forms:
OUTP:REC: STAT?
OUTP:REC:STAT <0 or 1>

Long forms:
OUTPUT:RECORDER:STATE?

Description:

This command checks the state or recorder out or disables or enables recorder out.

Examples:

In this series of commands the recorder output is turned on and off.
0000513 _. *RST

Check the state of recorder out

0000514 - OUTP:REC:STAT?
0000515 ~ O

Set the state of recorder out to enabled
0000516 — OUTP:REC:STAT 1

Recheck the state

0000517 - OUTP:REC:STAT?
0000518 ~ 1

On Reset

The recorder output default state is off or 0. And it is place in this state on *RST or power on.

Other Notes:

If recorder out is enabled and then trigger out is enabled recorder out is then disabled.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

84

LBSFXX Series True-RMS Power Sensor Programming Guide v1
85

OUTPut:TRIGger:SLOPe

Syntax:
Most common forms:

OUTP:TRIG:SLOP?
OUTP:TRIG:SLOP [NEG|POS]

Long forms:
OUTPUT: TRIGGER : SLOPE?
OUTPUT: TRIGGER:SLOPE [NEG|POS]

Description:

This command determines whether the TTL compatible trigger out signal will present a negative or positive
pulse when a measurement is made. If the pulse is positive then with no measurement the trigger out voltage
will be OV. When a measurement occurs (assuming trigger output is enabled) a positive going TTL compatible
pulse is sent to the trigger out port. The pulse width is approximately 500ns as shown below.

2.50G5/s) 11 Oct 2019]
1M points 1 00 V 02:15:22

'V—I—V—

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
86

If the trigger slope is negative, a negative going pulse will be placed on the output port as shown below.

2.50G5/5 a8 "'H"'n Oct 2019]

10.00 % 1M points 1.00V |

In this case we are checking and setting the trigger slope. Then doing a *RST and testing the default value after a

102:15:57 |

Examples:

reset.

0001111 - OUTP:TRIG:SLOP?
0001112 — NEG

0001113 - OUTP:TRIG:SLOP POS
0001114 - OUTP:TRIG:SLOP?
0001115 — POS

0001116 - OUTP:TRIG:SLOP NEG
0001117 - OUTP:TRIG:SLOP?
0001118 ~ NEG

0001119 - *RST

0001120 — OUTP:TRIG:SLOP?
0001121 — POS

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
87

OUTPut:TRIGger[:STATe]

Syntax:
Most common forms:

OUTP:TRIG:STAT?
OUTP:TRIG:STAT [0]1]

Long forms:
OUTPUT : TRIGGER: STATE?

OUTPUT : TRIGGER: STATE [0]1]

Description:

This command enables or disables the trigger out signal that is placed on the TO port. A trigger is generated
each time a measurement is made.

Examples:

0001119 - *RST

0001120 — OUTP:TRIG:SLOP?
0001121 ~ POS

0001122 - OUTP:TRIG:STAT?
0001123 ~ O

0001124 - OUTP:TRIG:STAT 1
0001125 - OUTP:TRIG:STAT?
0001126 ~ 1

0001127 - OUTP:TRIG:STAT 0
0001128 - OUTP:TRIG:STAT?
0001129 ~ O

On Reset
On reset the trigger state is set to 0, OFF or disabled.
Other Notes:

Setting OUTP:TRIG:STAT to 1 or enabled will disable recorder out if it is disabled. In a like manner, enabling
recorder out will disable OUTP:TRIG:STAT.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
88

Sense

This group of commands controls the measurement parameters and processes. It includes control of the
samples per average, many kinds of corrections, how much averaging is to be done, some aspects of triggering,
setting up frequency and power sweeps and many other aspects. Aside from the basic measurement commands
(MEAS?, READ? and FETCH) this set of command are most central to the purpose of the power sensor.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
89

Averaging Commands Overview

These commands control the measurement time. Measurement time and measurement noise are usually traded
off against each other. As measurement time increases, measurement noise decreases. To give you an idea of
how this might affect your measurement consider the following chart.

Averaging vs. Measurement Noise

-49.4 - - - - - '
494 20 40 60 80 100 120
-49.8 1 Average

-50 i 10 Averages
-50.2 N 100 Averages
-50.4
-50.6

As averaging is increased from 1 average per point: to 10 averages per point: and finally to 100 averages the
noise (point to point variation) of the measurement decreases. These measurements were made at about -
50dBm. However, another consideration is time.

To understand the effects of time and averaging you may want to consider the following. | Using the
InteractivelO application by executing the following (RF source is set to -50dBm):

0000203 - *RST

0000204 - aver:coun:auto?
0000205 ~ 1

0000206 — aver:coun:auto 0
0000207 - aver:coun:auto?
0000208 —~ 0

0000209 - aver:coun?
0000210 ~ +4

0000211 - aver:coun 1
0000212 - aver:coun?
0000213 ~ +1

0000214 -, SENS:AVER:SDET?
0000215 ~ 1

0000216 — SENS:AVER:SDET 0
0000217 - read?

0000218 —~ -5.01313042E+01

Then | created a simple read macro by highlighting the read? and adding a macro named “SimpleRead”. Then |
repeated “SimpleRead” 20 times (Ctrl-T) for the following result.

——————— Start Macro [#SimpleRead#]
0000219 - read?
0000220 —~ -5.03173258E+01

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
90

——————— End Macro

0000278 — read?

0000280 — -5.00247631E+01

_______ End Macro [#SimpleReadit]

——————— #SimpleRead# was repeated 20 times in 1011 ms

| changed AVER:COUN to 10 then repeated “SimpleMacro” 20 time with the following result:

0000281 - aver:coun 10

——————— Start Macro [#SimpleRead#]
0000282 - read?

0000284 — -5.00902647E+01

——————— End Macro

0000339 - read?

0000341 — -5.00950042E+01

_______ End Macro [#SimpleRead#]

——————— #SimpleRead# was repeated 20 times in 7922 ms

Then | set AVER:COUN to 100 and repeated the process with the following result:

0000342 - aver:coun 100

——————— Start Macro [#SimpleRead#]
0000343 - read?

0000345 —~ -5.01078571E+01

0000400 - read?

0000402 ~ -5.01120167E+01

——————— End Macro [#SimpleReadit]

——————— #SimpleRead# was repeated 20 times in 77044 ms

The table below summarizes the impact of average count on measurement time:

AVER:COUN Measurement Time
(sec)

1 0.051
10 0.396
100 3.850

The increase in measurement time is proportional to the number of averages. AVER:COUN can be increased to
1000 or even to 4096. And, increasing it will decrease measurement noise. On the other hand, measurement
time might become prohibitive. Still, for some situations, this increased measurement time is acceptable.

The following properties may affect total measurement time:

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1

° [SENSE:] AVERage : COUNt

° [SENSE:]AVERage : AUTO

o [SENSE:]AVERage : STATe

e [SENSE:]MRATe

° [SENSE:]AVERage: SDETect
. [SENSE:] BUFFer : COUNt

e Triggering setup

All but the last one (triggering setup) will be covered in this, SENSE, section.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
92

[SENSe]:AVERage:COUNt

SENSel:AVERage:COUNt

Syntax:
Most common forms:
AVER: COUN?
AVER:COUN <NUM>
AVER:COUN? MIN
AVER:COUN? MAX

Long forms:

SENSE : AVERAGE : COUNT?

SENSE : AVERAGE : COUNT? MIN
SENSE : AVERAGE : COUNT? MAX
SENSE1 : AVERAGE : COUNT?
SENSEL1 : AVERAGE : COUNT? MIN
SENSE1 : AVERAGE : COUNT? MAX
SENSE : AVERAGE : COUNT <NUM>
SENSE1 : AVERAGE : COUNT <NUM>

Description:

This sets or gets the number of averages per measurement. This command also accepts MIN and MAX as pass
parameters. These values request the minimum and maximum values for AVER:COUN.

An average should not be confused with sample. Generally, an average is not equivalent to a sample. Generally,
each average is the composed of several samples. The average property also interacts with the MRAT
(measurement rate) property or command.

Examples:

0000203 - *RST

0000204 - aver:coun:auto?
0000205 ~ 1

0000206 — aver:coun:auto 0
0000207 - aver:coun:auto?
0000208 —~ O

0000209 - aver:coun?
0000210 — +4

0000211 - aver:coun 1
0000212 - aver:coun?
0000213 ~ +1

0000445 - AVER:COUN? MIN
0000446 — +1

0000447 — AVER:COUN? MAX
0000448 — +4096

On Reset

On reset the average count is set to 4.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
93

Common Error Messages:

If SENSE:MRATE is set to FAST and the user attempts to set averages, a -221 “Settings conflict” error message is
issued. This is because MRAT FAST does not allow averaging. However, if SENSE:MRATE is set to SUPer then
averaging parameter can be set without issue.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
94

[SENSe]:AVERage:COUNt:AUTO

SENSel:AVERage:COUNt:AUTO

Syntax:
Most common forms:
AVER : COUN: AUTO?
AVER:COUN:AUTO 0
AVER:COUN:AUTO 1

Long forms:

SENSE : AVERAGE : COUNT : AUTO?
SENSE : AVERAGE : COUNT : AUTO 0
SENSE : AVERAGE : COUNT : AUTO 1
SENSE1 : AVERAGE : COUNT : AUTO?
SENSEL1 : AVERAGE : COUNT : AUTO 0
SENSE1 : AVERAGE : COUNT : AUTO 1

Description:

This command allows the user to control the state of the automatic averaging (or auto-averaging) feature. This is
also referred to as the auto-filter. This command also allows the user to query the state of auto-averaging. When
enabled, the average count command rendered ineffective. So, the user is not required to set the average count
explicitly. Instead, the sensor samples the incoming signal and adjusts the averaging based on the resolution
specified by the user. The resolution is set as part of the MEASure? or CONFigure command . For a more
thorough treatment of these commands refer to “The Basics of Making Power Measurements” in this document.

It is important to note that this command interacts with or is affected by the following parameters or
commands:

e AVERAGE:STATE or AVER:STAT — enables or disables averaging and so that the state of
AVER:COUN:AUTO is overridden but its value remains unchanged.

e AVER:STAT is enabled anytime this command or parameter to ON or 1

e Both MEAS? and CONF automatically enable AVER:STATE:AUTO

e AVERAGE:COUNT or AVER:COUN disables AVER:COUN:AUTO anytime AVER:COUN is set

e MRAT disallows AVER:COUN:AUTO to be enabled if MRAT = FAST or SUPER

The table below gives the averages for various power levels when this parameter is enabled:

Examples:

On Reset

A *RST command enables AVER:COUN:AUTO.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1

Common Error Messages:

Other Notes:

LBSFXX Series True-RMS Power Sensor Programming Guide v1

95

LBSFXX Series True-RMS Power Sensor Programming Guide v1
96

[SENSe]:AVERage:SDETect

SENSel:AVERage:SDETect

Syntax:
Most common forms:
AVER: SDET?
AVER:SDET 1
AVER:SDET 0

Long forms:

SENSE : AVERAGE : SDETECT?
SENSE : AVERAGE : SDETECT 0
SENSE : AVERAGE : SDETECT 1
SENSE1 : AVERAGE : SDETECT?
SENSE1 : AVERAGE : SDETECT 0
SENSE1 : AVERAGE : SDETECT 1

Description:

Step detection (SDET) is used to improve the chances of getting a more settled measurement. This is
accomplished by monitoring the incoming signal. If the average power changes more than 12.5% (about
0.511dB) during the course of the measurement then the signal automatically is once re-measured. Note that
this can increase the time required to return a value.

The LBSFxx allows 1 re-measurement so that the increase in measurement time is limited to A doubling.
However, it is possible that the LBSFxx will return an unsettled value in some cases.

Examples:

In this example the source power is varied by 3dB during the course of the measurement. The average count is
set long for purposes of demonstration. The measurement time is noted for each case with SDET set to 0 and 1.
The increase in measurement time is easily detected with these settings. Notice that I've created a macro called
INIT_READ. | set the count to 1. Then | selected the macro and pressed Ctrl-T so that the time to complete the
macro is recorded.

This is just setup..

0000008 — *RST

0000009 — AVER:COUN:AUTO O

0000010 -~ AVER:COUN 100

0000011 - MRAT NORM

Start with step detection disabled.
0000012 — AVER:SDET 0

During this measurement the power was left unchanged. And SDET was 0 or OFF
——————— Start Macro [#JUST_READ#]

0000013 — READ?

0000015 —~ -1.03571152E+01

——————— End Macro [#JUST_READi]

——————— #JUST_READ# was repeated 1 times in 3858 ms

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
97

I changed power during measurement by 3dB. Measurement time was unaffected. However, the
average power is incorrect.

——————— Start Macro [#JUST_READ#]

0000016 - READ?

0000018 — -8.04517581E+00

——————— End Macro [#JUST_READi#]

——————— #JUST _READ# was repeated 1 times in 3852 ms

Now I’1l1l enable step detection..
0000019 — AVER:SDET 1

And I changed power during the measurement by 3dB. Total time increased because SDET was
enabled but the average power reading is now correct.

——————— Start Macro [#INIT READ#]

0000020 — READ?

0000022 ~ -4.41788894E+00

——————— End Macro [#JUST_ READi#]

——————— #JUST_READ# was repeated 1 times in 5070 ms

On Reset

Step detection is enabled by default on power up and reset.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
98

[SENSe]:AVERage[:STATe]

SENSel:AVERage[:STATe]

Syntax:
Most common forms:
AVER?
AVER 0
AVER 1

Long forms:

SENSE : AVERAGE : STATE?
SENSE : AVERAGE : STATE 0
SENSE : AVERAGE : STATE 1
SENSE1 : AVERAGE : STATE?
SENSE1 : AVERAGE : STATE 0
SENSE1 : AVERAGE : STATE 1

Description:

This enables or disables averaging. This includes auto averaging, average count and step detection. This allows
measurements to return very quickly so that measurements are often not settled. However, one common use of
disabling averaging is to get a quick sense of the measured power level.

Examples:

In this example average count is set to 100 and averaging (AVER:STAT) is enabled then disabled. Note the
dramatic change in measurement time.

0000023 - *RST

0000024 - AVER:COUN:AUTO 0

0000025 — AVER:COUN 100

0000026 — AVER:STAT?

0000027 ~ 1

——————— Start Macro [#JUST_READ#]

0000028 — READ?

0000029 ~ -4.43118460E+00

——————— End Macro [#JUST_ READi#]

——————— Start Macro [#JUST_READ#]

0000030 — READ?

0000032 —~ -4.43476595E+00

——————— End Macro [#JUST_ READi#]

——————— #JUST_READ# was repeated 1 times in 3853 ms
0000033 — AVER:STAT 0

——————— Start Macro [#JUST_READ#]

0000034 - READ?

0000036 — -4.43769685E+00

——————— End Macro [#JUST_READi]

------- #JUST_READ# was repeated 1 times in 51 ms

On Reset

Averaging is by default on at reset and power on.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
99

Common Error Messages:

If AVER:STAT is set to 1 while MRAT is set to FAST. This message does not apply when MRAT is set to SUPER (or
SUP).

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
100

[SENSe]:BUFFer:COUNt

SENSel:BUFFer:COUNt

Syntax:
Most common forms:
BUFF : COUN?
BUFF : COUN <NUMBER)

Long forms:

SENSE : BUFFER : COUNT?

SENSE : BUFFER : COUNT? MIN
SENSE : BUFFER : COUNT? MAX
SENSE : BUFFER : COUNT <NUMBER>

Description:

Buffer count is used with external triggering. The range for buffer count is 1 to 250. Frequency sweep takes
control of buffer count when it is enabled thereby causing buffer count to be overwritten.

Examples:

0000048 - *RST

0000049 - BUFF:COUN?
0000050 — +1

0000051 — BUFF:COUN 100
0000058 — BUFF:COUN?
0000059 ~ +100

On Reset
Buffer count is set to 1 by default.

Common Error Messages:

If FREQ:STEP is not equal to zero error message -221,”Settings conflict” will be generated
Other Notes:

This parameter is used by frequency sweep. So that the value of BUFF:COUN is read only unless FREQ:STEP = 0.

[SENSe]:CORRection:CSET2:STATe
SENSe1:CORRection:CSET2:STATe
[SENSe]:CORRection:CSET2[:SELect]
SENSel:CORRection:CSET2[:SELect]

[SENSe]:CORRection:FDOFfset[:INPut][:MAGNitude]?/qonly/

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
101

SENSel:CORRection:FDOFfset[:INPut][:MAGNitude]?/qonly/
[SENSe]:CORRection:GAIN4[:INPut][:MAGNitude]?/qonly/

SENSel:CORRection:GAIN4[:INPut][:MAGNitude]?/qgonly/

Syntax:

Most common forms:
CORR:CSET2 <TABLE NAME>
CORR:CSET2:STAT 0
CORR:CSET2:STAT 1
CORR : FDOF?

Long forms:

SENSE : CORRECTION: CSET2 : SELECT <TABLE NAME>

SENSE : CORRECTION: CSET2 : STATE 0

SENSE : CORRECTION: CSET2: STATE 1

SENSE : CORRECTION: FDOFFSET : INPUT : MAGNITUDE?

SENSE1 : CORRECTION: CSET2 : SELECT <TABLE NAME>
SENSE1 : CORRECTION: CSET2 : STATE 0

SENSE1 : CORRECTION:CSET2 : STATE 1

SENSE1 : CORRECTION : FDOFFSET : INPUT : MAGNITUDE?

Description:

The CSET2 (FDOF) commands covered here apply to frequency dependent offset tables. They are covered as a
set because they are used in concert. Other related commands are the MEM:TABL commands covered in
considerable detail in the memory section of this manual. As with other STAT or STATE commands, the
CORR:CSET2:STAT command enables and disables the frequency dependent offset table. While the CORR:CSET2
command selects one of 10 (0...9) tables.

Note that GAIN4 refers to FDOFFSET. And that CORR:FDOF? returns the FDO offset applied to the current
measurement. This will be a value of 100.0 (meaning 100% or no offset) when GAIN2 is disabled. This function is
handy for verifying your frequency dependent offset table.

Examples:

This example focuses on using CSET2 and FDO commands. See the MEM:TABL sections of this manual for
additional information. In this example I've set up my source for about 0.0dBm. Note that CSET2 or FDO is the
measurement system response. When FDO is enabled the reported value will be the measured value minus the
system response. The table used in this example is “CUSTOM_A". When selecting a table enclose the name in
double quotes as shown below.

0000282 - *RST
Which table is selected? We want CUSTOM A but CUSTOM B was previously selected

0000283 — CORR:CSET2?
0000284 . CUSTOM B

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
102

So we’ll start by selecting CUSTOM A
0000285 — CORR:CSET2 "CUSTOM A"

For convenience, setup for quick measurements
0000286 — AVER:COUN:AUTO 0

0000287 — AVER:SDET 0

0000288 — AVER:COUN 10

0000289 — FREQ 1GHZ

What does the CUSTOM A table look like?

0000290 - MEM:TABL:SEL?

0000291 ~ CUSTOM A

0000292 . MEM:TABL:FREQ?

0000293 —~ 1.000000E+09,2.000000E+09,3.000000E+09,4.000000E+09
0000294 - MEM:TABL:GAIN?

0000295 —~ 5.000000e+01,1.000000e+02,1.500000e+02,1.000000e+02

Check the state of FDO correction..it should be off and it is
0000296 —» CORR:CSET2:STAT?
0000297 ~ O

Make a quick measurement and recheck our frequency..note that this is about -0.001dB
0000298 — READ?

0000299 ~ -1.22661803E-03

0000300 — FREQ?

0000301 — +1.00000000E+09

Check to see how much offset we are applying..should be none (100%) because FDO is disabled
0000302 - CORR:FDOF?
0000303 —~ +1.00000000E+02

Now we’ll enable FDO
0000304 . CORR:CSET2:STAT 1
0000305 —. CORR:FDOF?

Recheck the current FDO offset (1GHZ). It should correspond to the table above and it does..
0000306 — +5.00000000E+01

Now make a measurement..should be about 3.01dB and it is
0000307 - READ?
0000308 —~ +3.00918434E+00

Change the frequency and make a new measurement..
0000309 - FREQ 2GHZ

0000310 — CORR:FDOF?

0000311 —~ +1.00000000E+02

0000312 - READ?

0000313 -~ +8.16211979E-02

Do it again (note 150% corresponds to about 1.76dB)..
0000314 - FREQ 3GHZ

0000315 — CORR:FDOF?

0000316 — +1.50000000E+02

0000317 — READ?

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
103

0000318 -~ -1.75841388E+00

..and again..

0000319 - FREQ 4GHZ
0000320 — CORR:FDOF?
0000321 — +1.00000000E+02
0000322 - READ?

0000323 —~ +1.68819594E-02

Return to 1GHz and recheck with FDO enabled
0000324 . FREQ 1GHZ

0000325 -, CORR:FDOF?

0000326 — +5.00000000E+01

0000327 - READ?

0000328 —~ +3.01174029E+00

Disabled FDO and recheck..looks Ok
0000329 . CORR:CSET2:STAT 0
0000330 — READ?

0000331 — +5.52826404E-04

On Reset

It is important to note that the state of these properties are unaffected by a *RST. In other words, if CSET2 is
enabled before a *RST it will be enabled after a *RST.

Common Error Messages:

If you enable CSET2 (FDO) without a table being selected you’ll get error -221 “Settings Conflict” and of course
CSET2 will remain off. If you try to select a table that isn’t present you’ll get -256, “File name not found”. If your
name contains invalid characters (e.g. “#”) you'll generate a -224, “lllegal parameter value”.

Finally, the LBSFxx error checks the table upon selection. It does this by comparing the number of frequency
points to the number of gain/loss points. If the count differs this generates a -226, “Lists not the same length”
error.

Other Notes:

The example code in the memory chapter can be helpful in understanding frequency dependent offset tables.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
104

[SENSe]:CORRection:DCYCle:STATe
SENSel1:CORRection:DCYCle:STATe
[SENSe]:CORRection:DCYCle[:INPut][:MAGNitude]
SENSel:CORRection:DCYCle[:INPut][:MAGNitude]
[SENSe]:CORRection:GAIN3:STATe
SENSel:CORRection: GAIN3:STATe
[SENSe]:CORRection: GAIN3[:INPut][:MAGNitude]

SENSe1:CORRection: GAIN3 [:INPut][:MAGNitude]

Syntax:

Most common forms:
CORR:DCYC <NUMBER>
CORR :DCYC?
CORR:DCYC: STAT?
CORR:DCYC:STAT 0
CORR:DCYC:STAT 1

Long forms (a few):

SENSE : CORRECTION : DCYCLE : INPUT : MAGNITUDE <NUMBER>
SENSE : CORRECTION: DCYCLE : STATE?

SENSE : CORRECTION: DCYCLE : STATE 0

SENSE : CORRECTION: DCYCLE: STATE 1

SENSE : CORRECTION: GAIN3 : INPUT : MAGNITUDE <NUMBER>
SENSE : CORRECTION: GAIN3: STATE?

SENSE : CORRECTION: GAIN3: STATE 0

SENSE : CORRECTION: GAIN3: STATE 1

Description:

In this command set, DCYCLE and GAIN3 are synonyms. This command is used to adjust the measured value by
an assumed duty cycle. The duty cycle can take on a value of between 0.001 and 99.999 with PCT as optional
units. So that both 10.01 and 10.01 PCT are acceptable and equivalent.

It is important to note that simply setting the value of duty cycle also enables duty cycle.
To calculate the offset in dB:

dB =10.0 * log10(value in per cent/100.0)

The default value of 1% results in 20dB of correction. And 50% yields 3.01dB of correction.
Examples:

In this example the power level from the source is set to about 3dBm.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
105

0000386 — *RST

Setup for quick measurements
0000387 — AVER:COUN:AUTO 0
0000388 — AVER:SDET 0
0000389 — AVER:COUN 10

Check the value of DCYCLE or duty cycle.it is 1 PCT.
0000390 - CORR:DCYC?
0000391 —~ +1.000000E+00

Set it to 50.0 or 50 PCT
0000392 -, CORR:DCYC 50 PCT
0000393 - CORR:DCYC?
0000394 —~ +5.000000E+01
0000395 . CORR:DCYC 50.0
0000396 - CORR:DCYC?
0000397 ~ +5.000000E+01

We didn’t enable DCYCLE, yet it appears enabled. This was a result of setting the value
0000398 — CORR:DCYC:STAT?
0000399 ~ 1

We’ll turn it off and check the power level..3dB
0000400 — CORR:DCYC:STAT 0

0000401 - READ?

0000402 — +3.01424083E+00

Turn it on (50% duty cycle) and we get a 3dB increase.
0000403 — CORR:DCYC:STAT 1

0000404 - READ?

0000405 — +6.02054845E+00

Now we’ll query the sensor for the minimum and maximum allowable values
0000406 — CORR:DCYC? MIN

0000407 ~ +1.000000E-03

0000408 — CORR:DCYC? MAX

0000409 ~ +9.999900E+01

On Reset
The value is set to 1% and the state is disabled upon *RST.

Common Error Messages:

If you enable the state while MRATE = FAST a -221, “Settings conflict” error is generated. If you set the value of
DCYC with MRATE = FAST, the value will change but the state of duty cycle correction (CORR:DCYC:STAT) will not
be enabled.

Other Notes:

Setting the value of GAIN3 or DCYCLE enables this feature.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
106

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
107

[SENSe]:CORRection:GAIN2:STATe
SENSel:CORRection:GAIN2:STATe
[SENSe]:CORRection:GAIN2[:INPut][:MAGNitude]

SENSe1:CORRection:GAIN2[:INPut][:MAGNitude]

Syntax:
Most common forms:
CORR:GAIN2?
CORR:GAIN2? MIN
CORR:GAIN2? MAX
CORR:GAIN2:STAT?
CORR:GAIN2 <VALUE>
CORR:GAIN2:STAT 0
CORR:GAIN2:STAT 1

Long forms (a few):

SENSE : CORRECTION: GAIN2 : STATE?
SESNE : CORRECTION: GAIN2 : STATE 0
SESNE : CORRECTION: GAIN2 : STATE 1
SENSE : CORRECTION: GAIN2?

SESNE : CORRECTION: GAIN2 <VALUE>

Description:

As with many parameters you have the option of setting the value (CORR:GAIN2) and enabling or disabling the
parameter (CORR:GAIN2:STAT). This parameter is allows the user to setup an “general” correction value. This
can be used along with other forms of correction (e.g. FDO, MLP). This parameter is applied by addition. Unlike
FDO where the values entered are the response of the system, this value is the actual correction that is to be
applied to the measured value (by addition). CORR:GAIN2 allows a range -100dB to +100db.

Examples:

In this sequence, -5dB and +5dB of correction is applied and enabled and disabled

0000958 — *RST

Set up for quick measurements..
0000959 — AVER:COUN:AUTO 0
0000960 — AVER:SDET 0

0000961 — AVER:COUN 10

Make a measurement with no correction
0000962 - READ?
0000963 ~ +2.99571307E+00

Verify the state of GAIN2 correction

0000964 - CORR:GAIN2:STAT?
0000965 —~ O

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
108

0000966 — CORR:GAIN2?
0000967 —~ +0.000000E+00

Set GAIN2.. also enables GAIN2:STAT. When read, the -5dB of correction is apparent.
0000968 — CORR:GAIN2 -5.0

0000969 — READ?

0000970 ~ -2.00712283E+00

0000971 - READ?

0000972 ~ -2.00735009E+00

You can see that GAIN:STAT has been enabled
0000973 — CORR:GAIN2:STAT?
0000974 ~ 1

Change the CORR:GAIN to +5 dB of correction..you can see it works properly
0000975 — CORR:GAIN2 5.0

0000976 — READ?

0000977 ~ +7.99374313E+00

0000978 — READ?

0000979 ~ +7.99407945E+00

0000980 — READ?

0000981 ~ +7.99338090E+00

Turn off or disable CORR:GAIN2 and the power reading shows the uncorrected value
0000982 — CORR:GAIN2:STAT O

0000983 — READ?

0000984 — +2.99642488E+00

These commands demonstrate the option of getting MIN and MAX at runtime
0000985 - CORR:GAIN2? MAX

0000986 ~ +1.000000E+02

0000987 — CORR:GAIN2? MIN

0000988 —~ -1.000000E+02

On Reset
GAIN2 is set to 0.0 and the STATE is disabled.

Common Error Messages:

A -221, “Settings conflict” message is generated when MRAT = FAST

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
109

SENSe:CORRection:MLPad[:INPut]:STATe

SENSel:CORRection:MLPad[:INPut]:STATe

Syntax:
Most common forms:
SENS : CORR:MLP : STAT?
SENS:CORR:MLP:STAT 0
SENS :CORR:MLP:STAT 1

Long forms:

SENSE : CORRECTION : MLPAD : INPUT : STATE?
SENSE : CORRECTION : MLPAD : INPUT : STATE 0
SENSE : CORRECTION : MLPAD : INPUT : STATE 1
SENSE1 : CORRECTION : MLPAD : INPUT : STATE?
SENSE1 : CORRECTION : MLPAD : INPUT : STATE 0
SENSE1 : CORRECTION : MLPAD : INPUT : STATE 1

Description:

If enabled, it applies a correction for a 750hm to 50 Ohm minimum loss pad correction of 5.719dB. This is the
power lost in the MLP impedance matching devices. The correction is additive.

Examples:

Start with a reset and then setup for fast measurements
0001051 - *RST

0001052 - AVER:COUN:AUTO 0

0001053 — AVER:SDET 0

0001054 - AVER:COUN 10

Make a measurement

0001055 - READ?

0001056 — +2.98555903E+00
Check the MLP..it’s disabled
0001057 — SENS:CORR:MLP:STATE?
0001058 ~ 0

Enable MLP and re-measure. Note the change in the measured value
0001061 — SENS:CORR:MLP:STATE 1

0001062 — READ?

0001063 ~ +8.70673521E+00

Reset and note that the MLP was not disabled with a *RST
0001064 - *RST

0001065 — READ?

0001066 — +8.70707513E+00

0001067 — SENS:CORR:MLP:STATE 0

0001068 — READ?

0001069 — +2.98864140E+00

On Reset

Be aware that the state of MPL is unchanged by a *RST.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
110

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
111

[CALC:FEED is automatically set to “POW:AVER ON SWEEP1”
[SENSe]:FREQuency[:CW]

SENSel:FREQuency[:CW]

[SENSe]:FREQuency[:FIXed]

SENSel:FREQuencyl[:FIXed]

Syntax:
Most common forms:
FREQ?
FREQ? MIN
FREQ? MAX
FREQ <NUMBER>

Long forms:

SENSE : FREQUENCY : CW?

SENSE : FREQUENCY : CW? MIN
SENSE : FREQUENCY : CW? MAX
SENSE : FREQUENCY : CW? DEF
SENSE : FREQUENCY : CW <NUMBER>
SENSE1 : FREQUENCY : CH? MIN
SENSE1 : FREQUENCY : CH? MAX
SENSE1 : FREQUENCY : CH? DEF
SENSEL1 : FREQUENCY : CH <NUMBER>

Note that CW and FIXED are synonyms in this set of commands. So that
SENSE : FREQUENCY :CW? And SENSE:FREQUENCY:FIXED? Are equivalent.

Description:

This is used to set the frequency. This is then used to correct the measured value for the frequency response of
the sensor. Units can be appended to the value. The applicable units are Hz, kHz, MHz and GHz. When frequency
is set the FDO is recalculated and applied to any measurement.

Examples:

What happens with *RST..
0001093 - *RST

0001094 - FREQ?

0001095 —~ +5.00000000E+07

Lower case units..

0001096 - FREQ 10ghz
0001097 - FREQ?

0001098 —~ +1.00000000E+10

Upper case units

0001099 - FREQ 11GHZ
0001100 - FREQ?

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
112

0001101 ~ +1.10000000E+10

Get the minimum and maximum frequency supported by this sensor
0001102 - FREQ? MIN

0001103 ~ +9.00000000E+03

0001104 - FREQ? MAX

0001105 ~ +2.65000000E+10

On Reset

A *RST sets frequency to 50MHz.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
113

[SENSe]:FREQuency[:CW | FIXED]:STARt
SENSel:FREQuency[:CW | FIXED]:STARt
[SENSe]:FREQuency[:CW | FIXED]:STOP
SENSel:FREQuency[:CW | FIXED]:STOP
[SENSe]:FREQuency[:CW | FIXED]:STEP

SENSel1:FREQuency[:CW | FIXED]:STEP

Note: These commands require a trigger. This is often accomplished by using an RF source that frequency steps.
These sources often output a trigger for each frequency step. The trigger must be connected to the trigger input
of the sensor. The sensor synchronizes its measurements to the incoming trigger by making a measurement at
the next specified frequency when a trigger is received.

Syntax:

Most common forms:
FREQ: STAR?

FREQ:STAR? DEF |MIN|MAX
FREQ:STAR <number>
FREQ: STOP?

FREQ:STOP? DEF |MIN|MAX
FREQ:STOP <number>
FREQ: STEP?

FREQ:STEP? DEF |MIN|MAX
FREQ:STEP <number>

Long forms:

SENSE : FREQUENCY : FIXED : START?
SENSE : FREQUENCY : FIXED : STOP?
SENSE : FREQUENCY : FIXED : STEP?

Description:

These commands cause the sensor to make a series of measurements and then deliver this same series of
measurements as a group or buffer. The number of measurements delivered in the buffer is determined by
FREQ:STEP. Two other commands, FREQ:START and FREQ:STOP, set the end points of the sweep.

These commands are very specific in how they operate. It is essential to understand that setting FREQ:STEP to a
positive value (between 1 and 250) will place the sensor in “frequency sweep mode”. To resume average power
measurements you must set FREQ:STEP back to 0 (default value). Finally, each new sweep requires that *OPC
followed by setting FREQ:STEP. The requirement to set FREQ:STEP must be met even if the current value is
identical previous value (see the example below). The sensor firmware uses the setting of *OPC and FREQ:STEP
as a signal that a new sweep should commence.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
114

Normally, at implementation the start and stop frequencies are known. The variability is normally associated
with the number of steps or interval. Given a specific start and stop and number of steps, an evenly spaced
interval can be calculated as follows:

finterval = (fstop - fstart)/(StEP - 1)

For example, if the start frequency was 540MHz and the stop frequency was 1GHz and 100 steps were desired
the interval would be (frequencies in MHz):

finterval = (1000 — 540)/(100-1) or 460/99 => 4.646MHz

Notice that the step frequency is rounded to the nearest kHz. This is what the sensor does. Given a specific start
and stop and interval, the number of steps can be calculated as follows:

step = (fstop — fstart + fintervat) /(finterval)

Using the example above except this time we’ll use the start, stop and interval we get:
step = (fstop — fstart + fintervat)/(finterval) Or (1000 — 540 + 4.646)/4.646 => 100
Where:

fsart = the start frequency

fstopt = the stop frequency

fintervalt = the size or interval between steps

step = the number of steps

Examples:

In this example the sensor is swept twice. The first time a complete setup is done. In the next sweep *OPC and
FREQ:STEP are used to repeat the sweep. After this, frequency sweep mode is exited and an average power
measurement is made using immediate triggering. Note that the trigger source is returned to immediate and the
frequency step must be set to 0.

Start from a known state..
0000335 - *RST

Start the setup for the first sweep..we want relatively quick measurement for the demo..
0000336 — AVER:COUN:AUTO 0

0000337 — AVER:SDET 0

0000338 - AVER:COUN 10

Setup for triggering.
0000339 . TRIG:SOUR EXT
0000340 — TRIG:SLOP POS

..and then the start and stop freugencies

0000341 - FREQ:STAR 500MHZ
0000342 . FREQ:STOP 1000MHZ

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
115

The sensor must be set to immediately watch for the next trigger..
0000343 - INIT:CONT 1

Set the operation complete bit so *ESR? tells us when the sweep is done..
0000344 -, *OPC

..query *ESR until you get a 0O..then *ESR? will be watching for us.
0000345 - *ESR?

0000346 ~ +1

0000347 - *ESR?

0000348 ~ +0

To start the sweep set FREQ:STEP..
0000349 -, FREQ:STEP 10

Now that the sweep is started we will repeatedly query *ESR?
0000350 - *ESR?

0000351 ~ +0

0000352 - *ESR?

0000353 ~ +0

0000366 — *ESR?
0000367 ~ +0

Finally *ESR? tells us the sweep is done by returning a 1
0000368 — *ESR?
0000369 -~ +1

Now we’ll get the data

0000370 - FETCH?

0000371 -
+2.94186480E+00,+2.94203762E+00,+2.94395445E+00,+2.94310356E+00,+2.94242219E+00,+2.94087565E+
00,+2.94188366E+00,+2.94354162E+00,+2.94251383E+00,+2.94232040E+00

Ok, now get the next sweep by setting *OPC..

0000372 - *OPC

..then frequency step

0000373 — FREQ:STEP 10

Now we query *ESR? Until it returns 1
0000374 - *ESR?

0000375 ~ +0

0000376 — *ESR?

0000377 ~ +0

0000384 - *ESR?
0000385 — +0
All done
0000386 — *ESR?

0000387 ~ +1

Now we get the data

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
116

0000388 — FETCH?

0000389
+2.94371970E+00,+2.94248834E+00,+2.94154475E+00,+2.94166740E+00,+2.94263360E+00,+2.94317034E+
00,+2.94361075E+00,+2.94070365E+00,+2.94215700E+00,+2.94503756E+00

Finally, we exit frequency sweep mode and make an average measurement
0000390 — FREQ:STEP 0

0000391 - TRIG:SOUR IMM

0000392 - FETCH?

0000393 ~ +2.94474820E+00

On Reset

Common Error Messages:

Other Notes:

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
117

[SENSe]:MRATe
SENSel:MRATe
[SENSe]:SPEed

SENSel:SPEed

Syntax:
Most common forms:
MRAT NORM
MRAT DOUB
MRAT FAST
MRAT SUP
MRAT?

Long forms:
SENSE :MRATE NORMAL

SENSE :MRATE DOUBLE
SENSE :MRATE FAST
SENSE :MRATE SUPER
SENSE :MRATE?

Description:

The measurement rate or MRAT setting determines the rate of averaging or number of samples per average. As
you move from NORM to DOUB to FAST the number of samples per average decreases. As a result, the number
of completed measurements per second increases. So that if the number of averages is set to 1 (AVER:COUN 1)
then the following applies:

MRATE Maximum readings per | Time per
second Average
NORMal 20 34 ms
DOUBIle 40 17 ms
FAST 400 1.5ms
SUPer 800 75 us

Higher read rates can be achieved with trigger counts of 50 (using buffers).

Note that the sensor does not allow the number of averages to be set when MRAT = FAST. Trying to set the
number of averages with MRAT = FAST will generate a -221, “Settings confict” error message. To avoid this you
can set MRAT = SUPER. Super is in every way identical to fast except it allows you to set the number of averages.

Note: The SENS:SPEED commands are included here for compatibility purposes only. MRATE is the preferred
command. SENS:SPEED takes (or returns) a numeric parameter. The numeric parameters are 20, 40 and 110.

Examples:

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
118

These examples were executed in the Interactive 10. Any deviation from the read rates noted above is a result of
software not the sensor. But reasonable approximations of this table can be achieved using the Interactive 10
application.

0001884 - *RST

0001885 — AVER:COUN:AUTO 0

0001886 — AVER:SDET 0

0001887 — AVER:COUN 1

0001888 — MRAT NORM

——————— Start Macro [#JUST_READ#]
0001889 - READ?

0001891 ~ +2.95001684E+00

——————— End Macro [#JUST_ READ#]
——————— Start Macro [#JUST_ READ#]
0001892 -, READ?

0001894 — +2.95477319E+00

——————— End Macro [#JUST_ READi#]

0001939 — +2.94952262E+00

——————— End Macro [#JUST_ READ#]
——————— Start Macro [#JUST_READ#]
0001940 - READ?

0001942 -~ +2.94993072E+00

——————— End Macro [#JUST READ#]
——————— Start Macro [#JUST_READ#]
0001943 - READ?

0001945 — +2.94988765E+00

——————— End Macro [#JUST_ READi#]
——————— Start Macro [#JUST_READ#]
0001946 - READ?

0001948 — +2.94975026E+00

——————— End Macro [#JUST_ READi#]
——————— #JUST_READ# was repeated 20 times in 1027 ms

On Reset
MRATE is set to NORMAL on reset.

Common Error Messages:

As stated earlier, if you attempt to set the average count with MRATE = FAST you will get a -221, “Settings
conflict” message. If the SPEED command is used and the value of the parameter is not 20, 40 or 110 a -224,
"lllegal parameter” message is generated.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
119

[SENSe]:POWer:AC:RANGe:AUTO
SENSel:POWer:AC:RANGe:AUTO
[SENSe]:POWer:AC:RANGe

SENSel:POWer:AC:RANGe

Syntax:
Most common forms:
POW:AC : RANG : AUTO?
POW:AC:RANG:AUTO 1

Long forms:

SENSE : POWER : AC : RANGE : AUTO?
SENSE : POWER : AC : RANGE : AUTO 1
SENSE : POWER : AC : RANGE 0
SENSE : POWER : AC : RANGE 1

Description:

POW:AC:RANG is used to select the upper or lower range manually. Control over the selected path could be
valuable when measuring very narrow pulsed signals. The value 0 selects the lower range (less then about -
15dBm) and 1 selects the upper range (greater than about -15dBm). If you select either range
POW:AC:RANGE:AUTO is automatically disabled. You will need to explicitly enable POW:AC:RANG:AUTO (or
issue a *RST) to re-enable this feature.

Examples:

In this measurements are made using each range within its useable range, at its limit and beyond. Finally,
automatic range selection is re-enabled and measurements are repeated.

Start from a known state..
0000105 — *RST

0000106 — POW:AC:RANG:AUTO?
0000107 ~ 1

0000108 — POW:AC:RANG?
0000109 ~ 1

0000110 — POW:AC:RANG O
0000111 POW:AC :RANG:AUTO?
0000112 — O

l

Set source power to 0dBm
0000113 — INIT:CONT?
0000114 — O

0000115 — INIT:CONT 1
0000116 — FETCH?

0000117 ~ -9.72820365E+00
0000118 - POW:AC:RANG 1
0000119 — FETCH?

0000120 —~ -4.56114304E-01

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1

Set source power to -30dBm
0000121 - FETCH?

0000122 —~ -3.04687767E+01
0000123 — POW:AC:RANG 0
0000124 - FETCH?

0000125 — -3.04975394E+01
0000126 — POW:AC:RANG 1
0000127 — FETCH?

0000128 ~ -3.03713741E+01

Set source power to -40dBm
0000129 — FETCH?

0000130 — -3.21224785E+01
0000131 — POW:AC:RANG 0
0000132 - FETCH?

0000133 ~ -4.05227654E+01

Re-enable AUTO RANGE selection
0000134 - POW:AC:RANG:AUTO 1

Source power is still set to -40dBm
0000135 - FETCH?

0000136 ~ -4.05205412E+01

0000137 — FETCH?

0000138 ~ -4.05280215E+01

Source power to 0 dBm
0000139 - FETCH?

0000140 -~ -4.58481196E-01
0000141 - FETCH?

0000142 -~ -4.58466587E-01

LBSFXX Series True-RMS Power Sensor Programming Guide v1

120

LBSFXX Series True-RMS Power Sensor Programming Guide v1
121

[SENSe]:TEMPerature?/qonly/

SENSel:TEMPerature?/qonly/

Syntax:
Most common forms:
TEMP?

Long forms:
SENSE : TEMP?
SENSEL : TEMP?

Description:

Returns the temperature of the sensor in degrees Celsius.

Examples:

0000394 . TEMP?
0000395 ~ +3.432300E+01

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
122

Service

Service is a collection of commands that don’t have a direct bearing on measurements. Never the less, these
functions are widely used. These commands are often used in systems where some relationship between the
device under test and the equipment being used must be recorded.

These commands include setting or getting the last calibration date, the sensors serial number, firmware version
etc. It also supports a number of functions related to the capabilities of the sensor including maximum power
and frequency.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
123

SERVice:BIST:TRIGger:LEVel:STATe?/qonly/

Syntax:
Most common forms:
SERV:BIST:TRIG:LEV:STAT?

Long forms:
SERVICE:BIST: TRIGGER:LEVEL: STATE?

Description:

Returns a 0 when external trigger in is low or 1 external trigger in is high. External trigger is an SMB connector
labeled Tl on the back of the sensor.

Examples:

In this example a 1Hz, 5V square wave has been connected to trigger in port. This causes the return value to
switch between 0 and 1 depending on when the command was sent relative to the square wave.

0000090 — *RST

0000091 - SERV:BIST:TRIG:LEV:STAT?
0000092 ~ 1

0000093 -~ SERV:BIST:TRIG:LEV:STAT?
0000094 —~ O

0000095 — SERV:BIST:TRIG:LEV:STAT?
0000096 ~ 1

0000097 — SERV:BIST:TRIG:LEV:STAT?
0000098 ~ O

0000099 - SERV:BIST:TRIG:LEV:STAT?
0000100 ~ 1

0000101 — SERV:BIST:TRIG:LEV:STAT?
0000102 ~ 1

0000103 — SERV:BIST:TRIG:LEV:STAT?
0000104 ~ O

0000105 — SERV:BIST:TRIG:LEV:STAT?
0000106 ~ 1

0000107 — SERV:BIST:TRIG:LEV:STAT?
0000108 —~ O

0000109 - SERV:BIST:TRIG:LEV:STAT?
0000110 ~ 1

0000111 - SERV:BIST:TRIG:LEV:STAT?
0000112 ~ O

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
124

SERVice:OPTion/qonly/

Syntax:
Most common forms:
SERV:OPT?

Long forms:
SERVICE:OPTION?

Description:

This returns a list of options that are installed and enabled on the sensor in question.

Examples:

In this example the sensor has options 001 and 003 installed and enabled. Also, the return value indicates the
connector which in this case is 3.5mm male.

0000113 — SERV:OPT?
0000114 ~ "001,003,35M"

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
125

SERVice:SECure:ERASe/nquery/

Syntax:
Most common forms:

SERV:SEC:ERAS
SERV:SEC:ERAS FAST

Long forms:
SERVICE : SECURE : ERASE
SERVICE : SECURE : ERASE FAST

Description:

“Secure erase” allows the user to clear all relevant non-volatile memory. It includes save/recall registers,
frequency dependent offset tables, user calibration correction, state information and a number of other items.
The user may clear the data with or without the FAST parameter. In short, any parameter or value the user can
set, directly or indirectly, is cleared in the following manner:

28. “FAST” mode
o All bytes are set to 0x00
29. Normal mode
o All bytes are set to OxFF
o All bytes are set to a random number between 0x00 and OxFF inclusive
o All bytes are set to 0x00

Other Notes:

There are a range of motivations for employing this command. One motivation is to place the sensor in a known,
factory-like original state. Any single pass clearing of the data would meet the need. So, the command
SERV:SEC:ERAS FAST would be sufficient. The FAST parameter serves to speed up this process considerably.

A second motivation might be to clear the sensors of sensitive data for securing reasons. In this case, clearly the
one pass FAST erase is insufficient. To satisfy this need, simply execute the SERV:SEC:ERAS several times with no
parameters. For example, if you are required to obliterate the data in 32 passes, simply repeat the command 32
times. If you need 64 passes then repeat the command 64 times. Each pass will take between 7-15 seconds.

One final note, the random numbers used are generated using an “analog entropy source” or, analog noise
sources in the microprocessor.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
126

SERVice:SENSor:CDATe?/qonly/

SERVice:SENSor1:CDATe?/qonly/

Syntax:

Most common forms:
SERV: SENS : CDAT?

Long forms:
SERIVCE : SENSOR: CDATE?
SERIVCE : SENSOR1 : CDATE?

Description:
Returns the date of calibration in the form of Year, Month, Day

Examples:

In this example the date of calibration is August 8, 2016

0000117 - SERV:SENS:CDAT?
0000118 - 2018,8,6

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
127

SERVice:SENSor:CDUEdate

SERVice:SENSor1:CDUEdate

Syntax:
Most common forms:
SERV: SENS : CDUE?
SERV: SENS :CDUE <YEAR>,<Month>,<DAY>

Long forms:

SERVICE : SENSE : CDUEDATE?

SERVICE : SENSE1 : CDUEDATE?

SERVICE: SENSE:CDUEDATE <YEAR>,<Month>,<DAY>
SERVICE: SENSE1 : CDUEDATE <YEAR>,<Month>,<DAY>

Description:

This command either sets or returns the current calibration due date as stored in non-volatile memory. The
year, month, day must be enclosed in quotes (“) as shown in the example. Note, the parameters are not range
checked.

Examples:

In this example the date is queried, then set, queried again the cleared and queried once again.

0000161 — *RST

0000162 - SERV:SENS:CDUE?

0000163 . NONE

0000164 . SERV:SENS:CDUE "2020,6,15"
0000165 — SERV:SENS:CDUE?

0000166 — 2020,6,15

0000167 — SERV:SENS:CDUE ""

0000168 — SERV:SENS:CDUE?

0000169 . NONE

Common Error Messages:

If the surrounding quotes are omitted then error -148, “Character data not allowed” is issued.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
128

SERVice:SENSor:CPLace

SERVice:SENSorl1:CPLace

Syntax:
Most common forms:
SERV: SENS : CPL?
SERV:SENS:CPL <string>

Long forms:
SERVICE: SENSE :CPLACE?
SERVICE: SENSE:CPLACE <string>

Description:

This returns the place of calibration. The calibration place must in in quotes as shown in the example. To clear
the place of calibration supply the command is a quoted null string as shown in the example.

Examples:

In this example the calibration place is queried, then set to Boise, ID, queried again, cleared and queried once
more. Note that the string must be in quotes as shown below.

0000178 - SERV:SENS:CPL?

0000179 — NONE

0000180 — SERV:SENS:CPL "Boise, ID"
0000181 - SERV:SENS:CPL?

0000182 ~ Boise, ID

0000183 - SERV:SENS:CPL ""

0000184 . SERV:SENS:CPL?

0000185 ~ NONE

Common Error Messages:

If the surrounding quotes are omitted then error -148, “Character data not allowed” is issued.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
129

SERVice:SENSor:FREQuency:MAXimum?/qonly/
SERVice:SENSor1:FREQuency:MAXimum?/qonly/
SERVice:SENSor:FREQuency:MINimum?/qonly/

SERVice:SENSor1:FREQuency:MINimum?/qonly/

Syntax:
Most common forms:
SERV : SENS : FREQ : MAX?
SERV : SENS : FREQ : MIN?

Long forms:

SERVICE : SENSOR : FREQUENCY : MAXTMUM?
SERVICE : SENSOR1 : FREQUENCY : MAXIMUM?
SERVICE : SENSOR : FREQUENCY : MINUMUM?
SERVICE : SENSOR1 : FREQUENCY: MINUMUM?

Description:

As you might expect, these commands return the maximum and minimum operating frequency of the sensor.

Examples:
In the example below, we are querying an LBSF09

I 0000189 - SERV:SENS:FREQ:MAX?
0000190 —~ +9.00000000E+10
0000191 - SERV:SENS:FREQ:MIN?
0000192 — +4.00000000E+03

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
130

SERVice:SENSor:POWer:AVERage:MAXimum?/qonly/

SERVice:SENSor1:POWer:AVERage:MAXimum?/qonly/

Syntax:
Most common forms:
SERV : SENS : POW: AVER : MAX?

Long forms:
SERVICE : SENSOR : POWER : AVERAGE : MAXIMUM?

Description:

This command returns the maximum calibrated power for the sensor.

Examples:

0000193 - SERV:SENS:POW:AVER:MAX?
0000194 —~ +2.600000E+01

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
131

SERVice:SENSor:POWer:PEAK:MAXimum?/qonly/

SERVice:SENSor1:POWer:PEAK:MAXimum?/qonly/

Syntax:

Most common forms:
SERV : SENS : POW: PEAK : MAX?

Long forms:
SERVICE : SENSOR : POWER : PEAK : MAXIMUM?
SERVICE : SENSOR1 : POWER : PEAK : MAXIMUM?

Description:

This command returns the maximum peak power. The peak power specification is both power and time limited.
So, measuring peak power requires that you comply with both the peak power limitation and the time/duty
cycle limits of this specification.

Examples:

0000201 — SERV:SENS:POW:PEAK:MAX?
0000202 —~ +3.300000E+01

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
132

SERVice:SENSor:POWer:USABle:MAXimum?/qonly/
SERVice:SENSor1:POWer:USABle:MAXimum?/qonly/
SERVice:SENSor:POWer:USABle:MINimum?/qonly/

SERVice:SENSor1:POWer:USABle:MINimum?/qonly/

Syntax:
Most common forms:
SERV : SENS : POWER : USAB : MAX?
SERV : SENS : POWER : USAB : MIN?

Long forms:

SERVICE : SENSOR : POWER : USABLE : MAXTMUM?
SERVICE : SENSOR : POWER : USABLE : MINIMUM?
SERVICE : SENSOR1 : POWER : USABLE : MAXIMUM?
SERVICE : SENSOR1 : POWER : USABLE : MINIMUM?

Description:

This returns the maximum and minimum usable specified power.

Examples:

0000203 — SERV:SENS:POW:USAB:MAX?
0000204 —~ +2.600000E+01
0000205 — SERV:SENS:POW:USAB:MIN?
0000206 —~ -6.000000E+01

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
133

SERVice:SENSor:RADC?/qonly/

SERVice:SENSor1:RADC?/qonly/

Syntax:
Most common forms:
SERV: SENS : RADC?

Long forms:
SERVICE : SENSOR: RADC?
SERVICE : SENSOR1 : RADC?

Description:

This returns the ADC values of the two paths. The first number is the value of the least sensitive path. The
second number is the most sensitive path.

Examples:

0000207 — SERV:SENS:RADC?
0000208 ~ 39214,59706

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
134

SERVice:SENSor:SNUMber?/qonly/

SERVice:SENSor1:SNUMber?/qonly/

Syntax:
Most common forms:
SERV : SENS : SNUM?

Long forms:
SERVICE : SENSOR : SNUMBER?
SERVICE : SENSOR1 : SNUMBER?

Description:

This returns the factory serial number of the sensor.

Examples:

In this case the returned serial number is 177464. That you match the serial number on the rear bulkhead of the
instrument.

0000209 - SERV:SENS:SNUM?
0000210 — 177464

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1

135

SERVice:SENSor:TNUMber

SERVice:SENSor1:TNUMber

Syntax:

Most common forms:

SERV: SENS : TNUM?
SERV:SENS:TNUM <string>

Long forms:
SERVICE : SENSOR: TNUMBER?

SERVICE: SENSOR: TNUMBER <string>
SERVICE : SENSOR1 : TNUMBER?
SERVICE: SENSOR1 : TNUMBER <string>

Description:

This command allows the user to set and recall the tracking number for their own purposes.

Examples:

In the example below the tracking number is first queried. However, it is not set so “NONE” is returned. Then we
attempt to improperly set the tracking number. Notice error message -148. We omitted the quotes. Then we

reset the command with the quotes added. Finally we checked it and then set it back to a null string.

0000211
0000212
0000213
0000214
0000215
0000216
0000217
0000218
0000219
0000220
0000221

SERV: SENS : TNUM?

NONE

SERV:SENS:TNUM 123456789
SYST:ERR?

-148,"Character data not allowed"
SERV:SENS:TNUM "123456789"
SERV : SENS : TNUM?

123456789

SERV:SENS:TNUM ""
SERV: SENS : TNUM?

NONE

Common Error Messages:

As shown in the example, the most common error that might occur is because the quote marks are omitted. The

forces error -148,”Character data not allowed”

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1

SERVice:SENSor:TYPE?/qonly/

SERVice:SENSor1:TYPE?/qonly/

Syntax:
Most common forms:
SERV: SENS : TYPE?

Long forms:
SERVICE : SENSOR: TYPE?
SERVICE : SENSOR1 : TYPE?

Description:

This queries the sensors model number.

Examples:

0000222 - SERV:SENS:TYPE?
0000223 ~ LBSFO09A

LBSFXX Series True-RMS Power Sensor Programming Guide v1

136

LBSFXX Series True-RMS Power Sensor Programming Guide v1
137

SERVice:VERSion:PROCessor?/qonly/

Syntax:
Most common forms:
SERV: VERS : PROC?

Long forms:
SERVICE : VERSION : PROCESSOR?

Description:

This returns information about the sensor and its construction. If you call for support you are likely to be asked
for this return string.

Examples:

0000224 . SERV:VERS:PROC?
0000225 -

CPU=20016419,RF=0008 , USB=0027 , NAND=0FFF , DC=0359 , UPT=0273824446, INT=2108311039, 2E=0000000000, 2
0E=0000000000

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
138

SERVice:VERSion:SYSTem:DFU/nquery/

Syntax:

Most common forms:
SERV:VERS : SYST : DFU

Long forms:
SERVICE:VERS : SYSTEM:DFU

Description:

This places the sensor into a state that allows for firmware upgrades. When this command is issued the sensor
will be seen as a new type of device and the LED on the rear panel will start to blink alternating between green
and red.

You will lose the ability to communicate with it except through the upgrade application. To restore the sensor to
normal operation without upgrading, simply unplug and then plug in the USB cable on the sensor. This will
restore the sensor to its normal state.

Examples:
0000226 — SERV:VERS:SYST:DFU

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1

SERVice:VERSion:SYSTem?/qonly/

Syntax:
Most common forms:
SERV:VERS : SYST?

Long forms:
SERVICE:VERSION:SYSTEM?

Description:

This returns the firmware version of the sensor.

Examples:

0000229 . SERV:VERS:SYST?
0000230 « 0.99.242 20190611 1132_s ma

LBSFXX Series True-RMS Power Sensor Programming Guide v1

139

LBSFXX Series True-RMS Power Sensor Programming Guide v1
140

Status

The status commands can be used to monitor the state of the sensor. However, the explanation of Status
information may, for many, be overly complex. This is especially true when compared to actual use. Typically,
simply read the status byte. Occasionally, systems use the lower limit and upper limit fail registers.

In any case, the arrangement or structure of the status registers is as follows:

Base status registers = Intermediate status registers =P Status Byte

This means that each base register feeds an intermediate register. Each intermediate register feeds a bit in the
status byte.

In the LBSFxx sensors, each BASE register is 16 bits long but only one bit is used. The used bit used in the BASE
registers is always bit 1. Sometimes it is said that the base register bits are ORed together before being used to
set a bit in an intermediate registers. Again, there is only one active bit in base registers. Stating the base
register bits are ORed together is a bit pretentious (pun intended).

Some Intermediate registers receive the ORed values from base registers. Other intermediate registers do not
receive ORed values from base registers. Instead they have their own bits. In any case, the intermediate register
bits are ORed together and the result is used to set specific bits in the Status Byte. In short, each intermediate
register can set or clear 1 Status Byte bit.

The table below summarizes this arrangement.

Base Registers Intermediate Registers Status Byte
Name Bit Bit Name Bit
(unused) 0
(no base registers) 3 Device Status 1
Error Event Queue 2
Questionable POWer Summary 1 3 .
Questionable CALibration Summary 1 Questionable Status 3
Output Queue 4
(no base registers) 0..7 Standard Event 5
1..5,7 Status Byte 6
Operation CALibrating Summary 1 0
Operation MEASuing Summary 1 4
Operation TRIGger Summary 1 5 Operation Status 7
Operation SENSe Summary 1 10
Operation Lower Limit Fail Summary 1 11
Operation Upper Limit Fail Summary 1 12

Table 1 Status Registers

The table is read left to right. But an example makes it easy to interpret.

Example #1: Base register Questionable POWer Summary, bit 1, and base register Questionable CALibration
Summary, bit 1, feed intermediate register Questionable Status, bits 3 and 8 respectively. The ORed value of
intermediate register Questionable Status bits 3 and 8, are in turn used to set bit 3 of the Status Byte. That's it.

Example #2: Intermediate register, Device Status is not fed by any base register. However, the ORed value of
intermediate register Device Status, bit 3, sets Status Byte, bit 1.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
141

Example #3: The ORed value of the intermediate register Standard Event bits 0...7 are used to set Status Byte
bit 5.

Up to this point we’ve treated the registers as simple devices. But in fact the status registers are a bit more
complex.

Note: Individual users will determine the value of this information. Many (if not most) programmers eschew
this capability and simply monitor the status byte. This is the status byte is often sufficient for their
purposes. One exception might be the LLF and ULF summary registers.

In reality, each status register is composed of multiple layers. Each layer feeds the next. These layers (in order)
are as follows:

e The current value or condition register — This register is updated real time. Conceptually, this is what has
been discussed in this section up to this point. The current value is passed to its associated transition filter.

e Transition filter — This layer controls which changes in the condition register are passed to its associated
Event register.

o Positive transition — if a particular bit in the condition register changes from 0 to 1 this is considered
a positive transition

o Negative transition —if a particular bit in the condition register changes from 1 to 0 this is
considered a negative transition

e Event register - This layer latches any Transition filter changes clear to set. Once a bit is set it remains set
until it is cleared by a *CLS command. The contents of the event register are then passed through the
associated enable mask.

e Enable —This layer is simply a binary mask. The Enable mask passes bits from the Event register to the
associated Summary.

e Summary — This register ORs of all of the bits sent to it by the enable register. This ORed value (a0 or 1) is
the output or value of the Summary. This value is in turn passed to a single status register bit. So, if any bit in
the Event register is set: and the Enable mask has enabled these bits: the Summary will set its associated bit
in the Status Byte.

The purpose of all this is to “capture” changes in sensor status and report information asynchronously. To the
extent that a programmer is required to monitor, analyze and report this status information, these functions
may be useful. To satisfy such a requirement without filters, event registers and so on, would require the
programmer constant polling. This logic allows the user set up filters, and masks. And then monitor the Status
Byte as time permits.

Once the status byte reports a value of interest the programmer can interrogate the remaining registers to
determine the nature of the fault. And the programmer can be confident in the fact that all such events have
been captured. This asynchronous process is possible because all enabled Events are latched until cleared by a
*CLS.

The following status commands are covered as a group because of their association with this explanation and
their similarity in form.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1

142
Base Register Command Prefix
Questionable POWer Summary STATus:QUEStionable:POWer|[: SUMMary] :
Questionable CALibration Summary STATus:QUEStionable:CALibration[:SUMMary] :
Operation CALibrating Summary STATus:OPERation:CALibrating[:SUMMary] :
Operation MEASuing Summary STATus :OPERation:MEASuring[:SUMMary] :
Operation TRIGger Summary STATus:OPERation:TRIGger|[:SUMMary] :
Operation SENSe Summary STATus:OPERation:SENSe[:SUMMary] :
Operation Lower Limit Fail Summary STATus:OPERation:LLFail[:SUMMary] :
Operation Upper Limit Fail Summary STATus:OPERation:ULFail[:SUMMary] :

To complete a command append one of the following suffixes:

e CONDition?/gqonly/ - queries the current state of the register
e ENABle - enables or disables selected bits

e NTRasition - sets up or queries the negative transition mask
e PTRansition - sets up or queries the positive transition mask
e EVENt?/qonly/- queries the event status

So to query the POWer summary registers current state (condition) you would append the associated command
prefix with the condition query suffix:

STATus :QUEStionable:POWer|[:SUMMary]: + Condition?/qgonly/
...yielding

STAT :QUES : POW: SUMM: COND?

...or

STAT:QUES: POW:COND? (SUMM is optional)

From the intereactive 10 application it would look like this:

0000001 - STAT:QUES:POW:COND?
0000002 — +0

To determine if any events have occurred in the Operation Lower Limit Fail Summary you would send the
following query (from InteractivelO):

0000005 — STAT:OPER:LLF:EVEN?
0000006 — +0

And to examine the negative transition (NTR) mask then examine and set the positive transition (PTR) mask of
the same register:

0000011 - STAT:OPER:LLF:NTR?
0000012 ~ +0

0000013 - STAT:OPER:LLF:PTR?
0000014 — +32767

0000015 — STAT:OPER:LLF:PTR 0
0000016 — STAT:OPER:LLF:PTR?
0000017 ~ +0

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
143

0000018 — STAT:OPER:LLF:PTR +32767
0000019 - STAT:OPER:LLF:PTR?
0000020 — +32767

The intermediate and status registers are much the same in that they use a prefix and the same suffixes.

Intermediate and Status Registers Command Prefix
Device Status STATus :DEVice:
Questionable Status STATus:QUEStionable:
Operation Status STATus:OPERation:

And, just as with the base status registers, completing the command is accomplished by appending one of the
following suffixes:

e CONDition?/qgonly/
. ENABle

e NTRasition

. PTRansition

e EVENt?/qgonly/

By way of example (again from the interactive 10 application):

0000035 — STAT:DEV:COND?
0000036 — +0
0000037 — STAT:DEV:NTR?
0000038 ~ +0
0000039 - STAT:DEV:PTR?
0000040 — +8

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
144

STATus:PRESet/nquery/

Syntax:
Most common forms:
STAT : PRES

Long forms:
STATUS : PRESET

Description:

This command sets certain register filters to their preset or power on values. This command should not be
confused with *RST. For all status registers, the PTR (positive transition) filters are always set to all 1s. And all
NTR (negative transition) filters are set to 0. Note that, regardless of the following information, bit 15 is always
set to 0.

Finally, all of the ENABIe masks for all status registers are set to all 1s except for the ENABIe masks for the the
OPERational and QUEStionalbe. In these cases they ENABle masks are set to 0. The default or preset state of
these masks are why most programmers find the STATUS BYTE sufficient to determine the status of the sensor.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
145

System

The system commands provide commands to query, control or configure the sensor in a general sense.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
146

SYSTem:BLINk/nquery/

SYSTem:BLINk1/nquery/

Syntax:
Most common forms:
BLINK

Long forms:
SYSTEM:BLINK
SYSTEM:BLINK1

Description:

Issuing this command causes the LED on the rear bulkhead to blink bright green once. The bright green color can
be hard to see of the LED is bright red.

Examples:
0000254 _. BLINK

Other Notes:

The most common uses for this command, is to show that you’re communicating with the sensor. If there are
multiple sensors it can be useful in differentiating between the sensors.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1

SYSTem:COMMunicate:SPI:CLOCk

Syntax:
Most common forms:

SYST:COMM:SPI:CLOC <0[1]|2]|3>
SYST:COMM: SPI:CLOC?

Long forms:
SYSTEM: COMMUNICATION: SPI:CLOCk <0]|1]2]|3>
SYSTEM: COMMUNICATION: SPI : CLOCk?

Description:

147

This command defines the phase relationship between the SPI clock line and the SPI data line, allowing users to

align the sensor with existing systems. It uses the standard 4-mode SPI clock phase numbering convention. For

further details, refer to the LadyBug Option SPI guide.

Important Notes:
- Factory default setting: 3 (described below)

- The LBSFxxx power sensor operates as a slave on the SPI buss.

- The maximum clock rate is 1MHz.

- The clock mode setting is stored in non-volatile memory and is not affected by CONF, *RST, SYST:PRES.

- If the sensor is equipped with Option MIL (which disables non-volatile memory), the clock mode setting

is fixed at the factory default of 3 and cannot be modified.

- Executing a Secure Erase (Option SEC) will reset the sensor's clock mode to the factory default setting.

SYST:COMM:SPI:CLOC Clock Polarity Clock Phase
0 Low (Idle=0) 0 (1'st edge)
1 Low (Idle=0) 1(2’'nd edge)
2 High (Idle=1) 0 (1'st edge)
3 High (Idle=1) 1(2’'nd edge)

Slave Selech |

r

Suting: <fi> i 3 3 3 1

SCK Polarny =0 fhase-0a ? || F || F || i| I| || I| ! I| || I| ﬂ ||I
(s, e At wdgei r £ ! .

SeRling1 '

SCK Paluity =0 Phasis] f L | h | h | ! | || | || |II li ||I i‘
iDlata second sdgsel ! ! [¢ g

Sefling< i v 9

SCE Polwity =1 Phase=0 l |I 5 |I H |I E || lI ﬂ H || H ﬂ H ﬂ

Dt oh A g i v v v

Sl ¥

SCK Polaiity =0 Phase=| || r \ .F \ r \ r \ J \ ! \ “ \ !

Dt deroand edge! .

- EECEEEEEEE

SPI Clock Phase Diagram

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
148

SYSTem:COMMunicate:USB:ADDRess

Syntax:
Most common forms:

SYST:COMM:USB:ADDR <0..127>
SYST:COMM:USB:ADDR?

Long forms:
SYSTEM: COMMUNICATE : USB : ADDRESS <0..127>
SYSTEM: COMMUNICATE : USB : ADDRESS ?

Description:

Allows the user to set/get a value between 0...127 inclusive. It is not otherwise used by the sensor.

Examples:

This demonstrates setting and getting the variable. The highlighted area demonstrates the error condition.

0000309 -, SYST:COMM:USB:ADDR?
0000310 ~ +0

0000311 - SYST:COMM:USB:ADDR 10
0000312 -, SYST:COMM:USB:ADDR?
0000313 — +10

0000314 . SYST:COMM:USB:ADDR 127
0000315 -, SYST:COMM:USB:ADDR?
0000316 — +127

0000317 - SYST:COMM:USB:ADDR 128
0000318 -, SYST:ERR?

0000319 — -222,"Data out of range"
0000320 — SYST:COMM:USB:ADDR 0
0000321 -, SYST:COMM:USB:ADDR?
0000322 — +0

On Reset
This value is unaffected by *RST

Common Error Messages:

The most common error message will be the error message generate by going out of range as shown above.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
149

SYSTem:COMMunicate:USB:INTerface

Syntax:
Most common forms:
SYST:COMM:USB:INT?
SYST:COMM:USB:INT [USBTMC | USBHID]

Long forms:
SYSTem:COMMunicate:USB:INTerface?
SYSTem:COMMunicate:USB:INTerface [USBTMC | USBHID]

Important Notes:
- Factory Default Condition: USBHID
- New USB Class takes effect after power is cycled

Description:

The LBSFxxx series of USB power sensors support both USBTMC and USB HID interface classes. This command
allows the user to configure and query the USB interface class. USB HID mode is used by LadyBug Windows
software.

Configuring SYST:COMM:USB:INT to USBTMC disables USB HID mode and enables USBTMC mode, which will
make LadyBug’s Interactive 10 software un-accessible. Similarly, reverting from USBTMC back to USB HID mode
will disable connectivity with the USBTMC Interactive 10.

Important: Before sending this command, ensure that your system is prepared to communicate using the new
interface class setting. If the system is not configured for the new interface class, communication with the device
will be lost, and the power sensor may require a reset.

USB Class Reset
To reset the interface to the factory default USB HID class

e Using an Interactive 10 program with USBTMC
o Send the command SYST:COMM:USB:INT USBHID
e If an Interactive 10 program with USBTMC is not available.
Connect the sensor for at least 5 seconds
Unplug and reconnect the sensor’s USB connector three times within approximately 4 seconds.
Ensure the sensor’s LED illuminates green before each disconnection.
o Onthe 3’rd reconnection, the sensor’s LED will illuminate red, then green. The sensor is now
temporarily in USB HID mode.
o Open LadyBug’s Interactive |0 program and send the command SYST:COMM:USB:INT USBHID to
save the mode to non-volatile memory.

Note: If the sensor is disconnected prior to using LadyBug’s Interactive |10 to change the mode, the reset process
will need to be repeated.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
150

SYSTem:ERRor?/qonly/

Syntax:
Most common forms:
ERR?
SYST:ERR?

Long forms:
SYSTEM: ERROR?

Description:

This command returns the next error in the error queue. If there are no errors to return then a message
indicating no error is returned. Anytime there are errors in the queue, the LED on the rear bulkhead is bright
red.

Examples:

This sequence starts with an empty error queue and a series of queries showing what an empty error queue
looks like. Finally, an error is induced. In this case READ? times out because INIT:CONT is enabled. Then we
query the instrument and see an error message is present.

0000012 -, SYST:ERR?
0000013 — +0,"No error"
0000014 -, SYSTEM:ERROR?
0000015 — +0,"No error"
0000016 — ERR?

0000017 —~ +0,"No error"
0000018 - INIT:CONT?
0000019 ~ 1

0000020 - READ?

0000021 — timed out
0000022 -, SYST:ERR?
0000023 —~ -213,"Init ignored"

On Reset
The error queue is NOT cleaned out after a *RST or SYST:PRES.
Other Notes:

Issue a *CLS command to clear the error queue.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1

151

SYSTem:HELP:HEADers?/qonly/

Syntax:

Most common forms:
SYST:HELP: HEAD?

Long forms:
SYSTEM: HELP : HEADERS ?

Description:

This command returns a list of the SCPI commands. The commands are the same strings that have been used to

create the headers in this document. The string returned is an arbitrary data block (as defined in IEEE 488.2). The

format of the arbitrary data block is as follows:

30.
31.
32.

33.

34.

In general the form is #Xyyy..dddddd<LF>

The block starts with a “#”

The “#” is followed by a single ASCII character. This will be referred to as X. This ASCII character must be
one of the following ASCII characters 1,2,3,4,5,6,7,8,9. In particular, it cannot be a letter, nor can it be a
special character, nor can it be zero (“0”).

#X is followed by a string of ASCII characters. The individual characters in this string are represented
with a y. Each of the y characters must be one of the following ASCII characters: 0,1,2,3,4,5,6,7,8,9. The
number of y characters is X in length. So that if X=3 then there will be three ys. If X=7, then there will be
seven ys as shown in this string:

. #72345689
o # =start of return string
o 71=X

O 2345689 = yyyyyyy (note that there are seven ys)
The sequence of ys are grouped together and interpreted as a single number. We'll refer to the numeric
value represented by the ASCII collection of ys as Y. By way of example, the following uses this string:

o #328884892079...

In this case X=3 (highlighted in green), yyy (highlighted in magenta) is 215. The ASCII value represented
by yyy is 215. So that Yis 215. Y is the length of the data block that follows yyy. So that in this case the
returned data begins with “4892079” and continues on for a total of 214 characters followed by a <LF>
or line feed. This makes the total character count it 215 which is what we expect. Note that #3215 is not
included in the count of 215 but the trailing <LF> is counted in the 215.

Assume a command returned this string:
#2B8This is just a silly string<LF>
#2802Another demo string<LF>
#1BHello<LF>

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
152

In the first case X=2, yy = 28. This means Y = 28. So Y tells us that the data block (highlighted in grey) is
28 characters long. Note that <LF> is a common representation for a single line feed character whose
decimal value is 10. In the second case X=2, yy = 20. This means Y = 20. So Y tells us that the data block
(highlighted in grey) is 20 characters long. In the third case X=1, y = 6. This means Y = 6. So Y tells us that
the data block (highlighted in grey), in this case “Hello<LF>" is 6 characters long.

35. In our examples we have assumed the data block is composed of ASCII characters. But the data in the
data block could just as easily be binary data (as in traces).

Examples:
In this example we demonstrate SYST:HELP:HEAD?

0000010 — SYST:HELP:HEAD?
0000011 — #511121
:ABORt/nquery/
:ABORt1l/nquery/
:CALCulate: FEED
:CALCulate:FEED1
:CALCu.... .

*IDN?/qonly/
*OPC

*OPT?/qonly/
*RCL/nquery/
*RST/nquery/
*SAV/nquery/
*SRE

*STB?/qonly/
*TRG/nquery/
*TST?/qonly/
*WAI/nquery/

You can see that X=5, yyyyy = 11121 so that Y is 11121 bytes long. If you copy and paste this string into
Notepad++ (or other Word processor) you might see that the length of the reported string is longer that Y
indicates. This is a result of several things:

36. Most word processors will try to format the text and in so doing will add a <CR> and or a <LF> at the end
of each line

37. With some processors additional “hidden” characters are added

38. You've copied the sent command or other extraneous text

39. You’re counting the “#511121~ portion of the returned string

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
153

DIAG:BOOT:COLD/nquery/

Syntax:
Most common forms:
DIAG:BOOT:COLD

Long forms:
DIAG:BOOT : COLD

Description:

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1

SYSTem:PRESet/nquery/

Syntax:

Most common forms:
SYST:PRES

Long forms:
SYSTEM: PRESET

Description:

154

Other than INIT:CONT (detailed below), SYST:PRES (System preset) is equivalent to the IEEE 488.2 command

*RST.

Example: 0000005 - SYST:PRES

NOTE: *RST settings are identical to SYST:PRES DEF except *RST sets the following:

Set continuous initiation (*RST Sets to off) INIT:CONT] Off
SYST:PRES DEF command sets the following:

Description Equivalent command | Setting

Set the trigger source TRIG:SOUR Imm

Set averaging (Note: Automatic averaging will change tis if it remains on) | SENS:SVER:COUN 4

Set automatic averaging SENS:AVER:COUN Auto

Set averaging status SENS:AVER:STAT On

Turn on step detection SENS:AVER:SDET On

Set continuous initiation (SYST:PRES Sets to on) INIT:CONT On

Turn on automatic trigger delay (relates to the external trigger if used) TRIG:DEL:AUTO On

Set trigger delay (Delay after the trigger event to measurement start) TRIG:DEL 0

Set automatic trigger delay (AKA settling time delay) TRIG:DEL:AUTO On

Set trigger hold-off TRIG:HOLD 0

Set external trigger slope TRIG:SLOP POS

Set the number of trigger events per measurement cycle TRIG:COUN 1

The power measurement units UNIT:POW dBm

Set measurement type CALC:FEED POW:AVER

Clear limit data at initiation CALC:LIM:CLE:AUTO On

Lower limit CALC:LIM:LOW -90dBm

Limit Checking CALC:LIM:STAT off

Upper limit CALC:LIM:UPP +90dBm

Math expression CALC:MATH “(Sens1)”

Binary order FORM:BOARD normal

Data format FORM ascii

Channel offset status SENS:CORR:GAIN2:STAT Off

Channel offset value SENS:CORR:GAIN2 0dB

Measurement frequency (Note: depends upon the model) SENS:FREQ -

Measurement rate setting SENS:MRAT NORM

Measurement range SENS:POW:AC:RANG upper

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
155

‘ Auto range status SENS:POW:AC:RANG:AUTO On

SYSTem:VERSion?/qonly/

Syntax:

Most common forms:
SYST:VERS?

Long forms:
SYSTEM: VERSION?

Description:

This command returns the version of SCPI used in the LBSFxx sensors. Examples:

0000001 - SYST:VERS?
0000002 ~ "2006.1"

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
156

Trigger

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
157

TRIGger:DELay:AUTO
TRIGger1:DELay:AUTO
TRIGger[:SEQuence]:DELay:AUTO

TRIGger:SEQuencel:DELay:AUTO

Syntax:
Most common forms:
TRIG:DEL:AUTO?
TRIG:DEL:AUTO [0]1]

Long forms:

TRIGGER:DELAY : AUTO?
TRIGGER:DELAY:AUTO [0]1]
TRIGGER1 : SEQUENCE1 : DELAY : AUTO?

Description:

This enables or disables the automatic settling time algorithm in the sensor. In some cases (large power level
changes) additional time may be required. Even with this feature enabled, if you wish to ensure the
measurement is settled to your liking take and compare two back to back readings. If this feature is disabled the
sensor begins measurements as soon as a trigger occurs.

Examples:

In this example the automatic trigger delay is enabled and disabled.
0000053 . *RST

0000054 - TRIG:DEL:AUTO?

0000055 ~ 1

0000056 — TRIG:DEL:AUTO 0

0000057 TRIG:DEL:AUTO?

l

0000058 ~ 0

0000059 — TRIG:DEL:AUTO 1

0000060 — TRIG:DEL:AUTO?
0000061 ~ 1
On Reset:

As shown in the example, TRIG:DEL:AUTO is enabled with the sensor is *RST

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
158

TRIGger[:IMMediate]
TRIGger1[:IMMediate]/nquery/
TRIGger[:SEQuence]:IMMediate/nquery/

TRIGger:SEQuencel:IMMediate/nquery/

This command is the same as INIT, INIT:IMM or INITIATE:IMMEDIATE. Please consult the INIT:IMMEDIATE
command elsewhere in the manual.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
159

TRIGger[:SEQuence]:COUNt

TRIGger:SEQuencel:COUNt

Syntax:
Most common forms:

TRIG:COUN?
TRIG:COUN <number>

Long forms:
TRIGGER : SEQUENCE : COUNT?
TRIGGER : SEQUENCY : COUNT <number>

Description:

This is used to get a series of measurements (1-50) in a very short time period. To use trigger count the sensor
must be in free run (INIT:CONT = 1) and MRAT = FAST or SUPer. With MRAT in fast you are restricted to 1
average. If MRAT = SUP you can set the averaging. However, a group of measurements will take longer (because
averaging will be applied to each measurement). Trigger count can be set from 1 to 50. The default value of
TRIG:COUN = 1. If TRIG:COUN is greater than 1 and you set MRAT to anything other than FAST or SUP you’ll
generate a -221,”Settings conflict” error message. Finally, in this mode you’ll use FETCH? to retrieve the
measure values. Each time FETCH? is called new values are returned.

Examples:

In this example we use trigger count with MRAT = FAST and SUP. Setting TRIG:COUN to 1 when MRAT is set to
NORM or DOUB is also demonstrated.

0000065 — *RST
0000066 — INIT:CONT 1
0000067 — MRAT FAST

Take 5 measurements

0000068 — TRIG:COUN 5

0000069 — FETCH?

0000070 —~ -7.35443947E+01,-7.48911388E+01,-7.47946415E+01,-7.54379048E+01,-7.42985568E+01
0000071 - FETCH?

0000072 —~ -7.24080734E+01,-6.70442087E+01,-6.39921714E+01,-6.49239257E+01,-7.25393731E+01
0000073 — FETCH?

0000074 —~ -6.03682284E+01,-6.17204047E+01,-6.90643411E+01,-7.33756753E+01,-7.27013575E+01

Take 25 measurements

0000075 — TRIG:COUN 25

0000076 — FETCH?

0000077 —~ -7.29191367E+01,-7.44701710E+01,-7.52893055E+01,-7.45513153E+01,-7.22251496E+01, -
7.20036427E+01,-7.31956406E+01,-6.83442754E+01,-6.40323521E+01,-6.86150444E+01, -
7.19510663E+01,-7.17784388E+01,-7.14157007E+01,-7.01503679E+01,-7.20639699E+01, -
6.83238684E+01,-6.92899976E+01,-6.64262832E+01,-6.82780003E+01,-6.65846408E+01, -
6.51137256E+01,-6.53830441E+01,-7.14434742E+01,-6.71367839E+01,-6.41970447E+01

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
160

0000078 — FETCH?

0000079 ~ -6.27615498E+01,-6.32740443E+01,-7.14917086E+01,-7.40471500E+01,-7.35028169E+01, -
7.43737523E+01,-7.37897553E+01,-7.01428597E+01,-7.30247388E+01,-7.49765855E+01 , -
7.56000669E+01,-7.29210676E+01,-6.93758311E+01,-6.91521323E+01,-6.32603145E+01, -
6.03508988E+01,-5.99164785E+01,-6.21363357E+01,-6.88567995E+01,-7.25752253E+01, -
6.46710806E+01,-6.14748912E+01,-6.07040792E+01,-6.25539551E+01,-7.08493321E+01

Demonstrate the automatic setting of TRIG:COUN to 1 when entering MRAT = NORM, DOUB
0000080 - TRIG:COUN?
0000081 ~ +25

0000082 - MRAT NORM
0000083 — FETCH?

0000084 — -6.60257398E+01
0000085 — TRIG:COUN?
0000086 ~ +1

0000087 — TRIG:COUN?
0000088 ~ +1

0000089 - MRAT FAST
0000090 — TRIG:COUN 25
0000091 - TRIG:COUN?
0000092 — +25

0000093 - MRAT DOUB
0000094 - TRIG:COUN?
0000095 ~ +1

Demonstrate using MRAT SUPER with averaging enabled and set
0000096 — MRAT SUP
0000097 - TRIG:COUN 25

0000098 - AVER:COUN 1

0000099 . FETCH?

0000100 — -6.74649564E+01,-7.04888926E+01,-7.18685634E+01,-7.30780375E+01,-7.38256239E+01, -
7.32865064E+01,-7.14980760E+01,-7.19042443E+01,-7.29505223E+01,-7.24571208E+01, -
7.28574115E+01,-7.33785127E+01,-7.30421127E+01,-6.69614439E+01,-6.33718800E+01, -
6.55794058E+01,-6.95728846E+01,-7.11227133E+01,-7.26417679E+01,-7.35419244E+01, -
7.22315382E+01,-7.00012812E+01,-6.97223095E+01,-7.05828003E+01,-6.99339710E+01

Increase AVERL:COUN.. measurement took longer because of the increased averaging.

0000101 — AVER:COUN 20

0000102 — FETCH?

0000103 —~ -6.08579985E+01,-6.30138628E+01,-6.03772131E+01,-7.22413889E+01,-6.26971233E+01, -
6.42394105E+01,-7.00969250E+01,-6.15620482E+01,-6.04158772E+01,-6.11781545E+01, -
6.30169957E+01,-6.50615501E+01,-6.62549224E+01,-6.46924124E+01,-6.86386605E+01, -
7.10452634E+01,-7.24810440E+01,-7.28060714E+01,-6.85563579E+01,-6.14815571E+01, -
6.01117589E+01,-5.98852302E+01,-6.53155626E+01,-6.53447041E+01,-6.40082301E+01

On Reset:
TRIG:COUN =1

Error Messages:

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
161

When MRAT is NORM or DOUB and you attempt to set the trigger count to any value other than 1 a -
221,”Settings conflict” error message will be generated.

Notes:

When MRAT is set to NORMAL or DOUBLE while TRIG:COUN > 1, TRIG:COUN is set to 1.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
162

TRIGger[:SEQuence]:DELay

TRIGger:SEQuencel:DELay

Syntax:
Most common forms:
TRIG:DEL? [DEF|MIN|MAX]
TRIG:DEL <number>

Long forms:
TRIGGER: SEQUENCE :DELAY? [DEF |MIN |MAX]
TRIGGER:SEQUENCE :DELAY <number>

Description:

This sets the trigger delay or the time between the trigger event and the beginning of a measurement. This time
may be between 0 and 10 seconds. The default value is 0 seconds. Delay time is resolved to lusec.

Examples:
In this example the delay time is queried and set:

0000041 - *RST

0000042 - TRIG:DEL? DEF
0000043 —~ +0.000000E+00
0000044 - TRIG:DEL?
0000045 ~ +0.000000E+00
0000046 - TRIG:DEL? MIN
0000047 ~ 0.000000E+00
0000048 - TRIG:DEL? MAX
0000049 — +1.000000E+01
0000050 — TRIG:DEL 0.2
0000051 - TRIG:DEL?
0000052 ~ +2.000000E-01

On Reset:

The trigger delay is set to 0 upon receiving a *RST command.

Notes:

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
163

TRIGger[:SEQuence]:HOLDoff

TRIGger:SEQuencel:HOLDoff

Syntax:
Most common forms:
TRIG:HOLD? [MIN,MAX,DEF]
TRIG:HOLD <numeric>

Long forms:
TRIGGER : SEQUENCE : HOLDOFF? [MIN |MAX |DEF]
TRIGGER : SEQUENCE : HOLDOFF <numeric>

Description:

This command prevents another trigger from occurring for a set period of time (between 1us to 400ms
inclusive). One use of this command is to prevent unwanted triggers to occur. This can be very helpful with noisy
or non-repeating signals.

Examples:

0000104 - TRIG:HOLD? MIN
0000105 ~ +1.000000E-06
0000106 -~ TRIG:HOLD? MAX
0000107 ~ +4.000000E-01
0000108 - TRIG:HOLD? DEF
0000109 —~ +1.000000E-06
0000110 - TRIG:HOLD?
0000111 ~ +1.000000E-06
0000112 - TRIG:HOLD 0.1
0000113 - TRIG:HOLD?
0000114 —~ +1.000000E-01

On Reset:

TRIG:HOLD = 1usec (minimum time).

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
164

TRIGger[:SEQuence]:SLOPe

TRIGger:SEQuencel:SLOPe

Syntax:
Most common forms:
TRIG:SLOP?
TRIG:SLOP [NEG|POS]

Long forms:
TRIGGER : SEQUENCE : SLOPE?
TRIGGER : SEQUENCE : SLOPE [NEG|POS]

Description:

Trigger slope is used only when the TRIG:SOUR = EXT. If the value is POS then the trigger will occur on the rising
edge. If the value is NEG then the trigger will occur on a falling edge.

Examples:

0000254 - *RST

0000257 — TRIG:SLOP?
0000258 ~ POS

0000259 - TRIG:SLOP NEG
0000260 — TRIG:SLOP POS

On Reset:

On *RST the value is set to POS

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
165

TRIGger:SOURce
TRIGger[1]:SOURce
TRIGger[:SEQuence]:SOURce

TRIGger:SEQuencel:SOURce

Syntax:
Most common forms:
TRIG: SOUR?
TRIG:SOUR [IMM|EXT |HOLD |BUS]
TRIG: SOUR

Long forms:
TRIGGER : SEQUENCE : SOURCE?
TRIGGER : SEQUENCY : SOURCE [IMM|EXT |HOLD |BUS]

Description:
This command sets (or queries) the current trigger source. While this command determines the source of the

trigger it does not necessarily place the sensor in a state to respond to the trigger. The INIT command will do this
unless INIT:CONT is true.

Trigger Source Notes

IMMediate This causes the trigger system to always be enabled. If INIT:CONT = True then the
sensor continuously generates INIT command or triggers causing the sensor to be in
free run. The sensor returns to the idle state upon completing a measurement (of
course if INIT:CONT = True then another measurement is initiated.

EXTernal The TTL compatible trigger and the Trigger In port is used to generate the INIT. If no
trigger appears then no measurement occurs. This could be the source of timeouts.
HOLD Causes triggering to be disabled or suspended unless TRIG:IMM is used
BUS Waits for a *TRG SCPI command
Examples:

In this example the trigger source is set to IMM and EXT.

0000015 - *RST

0000016 — TRIG:SOUR?
0000017 ~ IMM

0000018 — TRIG:SOUR EXT
0000019 — TRIG:SOUR?
0000020 ~ EXT

0000029 - SYST:ERR?
0000030 — +0,"No error"

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
166

On Reset:
The trigger source is set to IMM upon *RST.

Common Error Messages:
o If the trigger source is set to EXT with MRAT = FAST a -221,”Setting conflict” error will be generated.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
167

Unit

The units command sets the units of the returned value.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
168

UNIT:POWer

UNIT1:POWer

Syntax:
Most common forms:

UNIT:POW < DBM|W >
UNIT: POW?

Long forms:
UNIT:POWER < DBM|W>
UNIT : POWER?

Description:

These commands sets or gets the measurement units to DBM or W (Watts).

Example:

This sequence sets and gets the units to Watts and DBM. It also demonstrates the effect on measurements. The
power level from the source was set to -10dBm. Note that when units are set to W a value of 9.26... E-05 is
returned. This is about 92.6microWatts or about -10.33dBm. Just as shown in the sequence.

0000054 - *RST

0000055 — UNIT:POW?
0000056 - DBM

0000057 — UNIT:POWER?
0000058 - DBM

0000059 - UNIT:POWER W
0000060 — UNIT:POWER?
0000061 —~ W

0000062 - READ?

0000063 — +9.26046559E-05
0000064 — UNIT:POW DBM
0000065 — READ?

0000066 —~ -1.03342328E+01

On Reset

The units are set to DBM on reset

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
169

Standard SCPI commands

These commands are the IEEE 488.2 commands that are supported by the LBSFxx. These commands are
supported by most USBTMC compatible instruments.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1

*CLS/nquery/
Syntax:

Most common forms:
*CLS

Long forms:
*CLS

Description:

This command clears all status information including:

SCPI registers

Standard event register
Status byte

Error message queue

Examples:

170

This example first tests to ensure that no error is present and the status byte is 0. Then a deliberate error is

made. The status byte is read showing that, in this case, an error is present in the error queue. Then *CLS is

executed and the status byte and error messages are read. Of course the *CLS should clear the status byte and

error message queue.

0000158 — *STB?

0000159 ~ +0

0000160 — SYST:ERR?
0000161 — +0,"No error"
0000162 - FREQ QERQWER
0000163 — *STB?

0000164 — +4

0000165 — SYST:ERR?
0000166 —~ -224,"Illegal parameter value"
0000167 — FREQ QERQWER
0000168 — *STB?

0000169 — +4

0000170 — *STB?

0000171 — +4

0000172 - *STB?

0000173 ~ +4

0000174 - *CLS

0000175 — *STB?

0000176 — +0

0000177 — SYST:ERR?
0000178 —~ +0,"No error"

LBSFXX Series True-RMS Power Sensor Programming Guide v1

force

we' ve

we' ve
force

we' ve

an error state

got a non-zero status byte

got an error message
the error again

got a non-zero status byte

now we’ll clear the status byte..

...sure

enough it is cleared

and the message queue is cleared

LBSFXX Series True-RMS Power Sensor Programming Guide v1

171

*ESE
Syntax:

Most common forms:

*ESE <0..7>

*ESE?

Long forms:

*ESE <0..7>

*ESE?
Description:

This command sets or gets the Standard Event Status Enable Register. This register is used to mask the output
of Standard Event Status Register bits that are, in turn, logically or’ed together. The result the logical or is used
to set or clear bit 5 of the Status Register byte (*STB?).

Bit Weight Meaning
0 1 Operation complete
1 2 Request control (not used)
2 4 Query error
3 8 Device dependent error
4 16 Execution error
5 32 Command error
6 64 Not used
7 128 Power on
Examples:

In the following sequence we repeatedly check, change and check the value of the event status register enable.

0000680 — *ESE?
0000681 — +0
0000682 - *ESE 1
0000683 - *ESE?
0000684 — +1
0000685 - *ESE 255
0000686 — *ESE?
0000687 ~ +255
0000688 — *ESE 0
0000689 — *ESE?
0000690 ~ +0

On Reset

The ESE register is cleared on a power on. It is unaffected by *RST.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
172

*ESR?/qonly/

Syntax:
Most common forms:
*ESR?

Long forms:
*ESR?

Description:

This command returns the contents of the Standard Event Status Register. Once it is read, the register is
cleared. The meaning of the individual bits are as follows:

Bit Weight Meaning
0 1 Operation complete
1 2 Request control (not used)
2 4 Query error
3 8 Device dependent error
4 16 Execution error
5 32 Command error
6 64 Not used
7 128 Power on
Examples:

This is an example of reading the Standard Event Status Register shortly after powered up. Note that the first

returned value indicates “Power On + Operation Complete.” After being read the register is cleared.
0000703 - *ESR?
0000704 ~ +129

0000705 — *ESR?
0000706 — +0

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
173

*IDN?/qonly/

Syntax:
Most common forms:
*IDN?

Long forms:
*IDN?

Description:

This command requests the sensors identity. Specifically it requests the manufacturer, model number, serial
number and firmware revision.

Examples:
In this example the sensor responds to a *IDN? command.

0000214 - *IDN?
0000215 ~ LadyBug Technologies LLC,LB59261,177464,0.99.242

The manufacturer is: LadyBug Technologies LLC
The model is: 1.B5926L
The serial number is: 177464

The firmware version is: 0.99.242

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1

174

*OPC
Syntax:

Most common forms:

*OPC

*OPC?

Long forms:

*OPC

*OPC?
Description:

*OPC causes the sensor to set the operation complete bit in the Standard Event Status register when all pending
operations are complete. The query returns a 1 when all pending operations are complete.

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
175

*OPT?/qonly/

Syntax:

Most common forms:
*OPT?

Long forms:
*OPT?

Description:

This command returns the option information for the sensor. See the example below.

Examples:

In the following example the sensor indicates that that it has options 001, 003 and a 3.5mm connector installed.

0000290 —. *OPT?
0000291 — "001,003,35M"

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
176

*RCL/nquery/

Syntax:
Command form:

*RCL <NRf>

Description:

The command recalls a previously saved sensor state from the specified register. The recalled state then
becomes the current sensor state. A state must have been previously saved to the specified register otherwise
an error will result. Note that the registers are 1 based (1...10) for this command and the *SAV command.

Examples:
0000085 - *RCL 1

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
177

*RST/nquery/

Syntax:
Most common forms:
*RST

Long forms:
*RST

Description:

This command causes the sensor to reset itself. Note that this changes the state of the sensor to its default
state. However, errors are note cleared. For details on the reset values, refer to the SUST:PRES command.

Examples:
0000280 — *RST

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
178

*SAV/nquery/

Syntax:
Command form:
*SAV <NRf>

Description:

This command saves the current state of the sensor in the specified register. Note that the registers are 1 based
(1...10) for this command and the *RCL command.

Example:
The following sequence saves the current state in register 1.

0000072 - *SAV 1

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1

179

*SRE

Syntax:
Most common forms:
*SRE <0..255>
*SRE?
Long forms:
*SRE <0..255>
*SRE?

Description:

The values passed in the *SRE command are floats or integer. The value (if required) is rounded to an integer

value. This command reports or controls the enable mask for the Service Request Register bits. This command

either sets or gets the Service Request Enable register. The Service Request Enable register bits are as follows:

Bit Weight
1

2

4

8

16
32
64
128

N o o A WN R O

Meaning

Not used

Not used

Device dependent
QUEStionable Status Summary
Message available

Event Status But

Not used

OPERation Status Summary

The Status Register Enable may take on any value of between 0..255 inclusive.

The value is the sum of the enabled bits. If a 1 occupies any position in the Service Request Enable register then

that bit is enabled in the Status Byte Register. If a 0 occupies any position in the Service Request Enable register
then that bit is disabled in the Status Byte Register.

For instance, if the Status Request Enable register value is set to a value of 20 (only bits 2 and 4 are set) then

Device dependent and Message available events will be made available to the status register as they occur.

Examples:

In this simple example the value is set to 20 and then checked.

0000404 - *SRE?
0000405 ~ +0
0000406 -~ *SRE 20
0000407 - *SRE?
0000408 ~ +20

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1

180
On Reset
The value is set to 0.

Common Error Messages:

Other Notes:

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
181

*STB?/qonly/

Syntax:
Most common forms:
*STB?

Long forms:
*STB?

Description:

This command returns a single byte summarizing the status information of the sensor. Each bit in the eight byte
summary reports a particular status (or is unused). The meaning of each bit is shown in the following table:

Bit Weight Interpretation
0 1 Not used
1 2 Device dependent or specific status

0 — A device specific status condition has occurred
1 — A device specific status condition has occurred
2 4 Error/Event queue
0 — Queue is empty
1 - Queue is not empty
3 8 Questionable status
0 — A questionable status condition has not occurred
1 - A questionable status condition has occurred
4 16 Message available
0 — A message is not available
1 — A message is available
5 32 Event status bit
0 — a status event or condition has not occurred
1 — a status event or condition has occurred
6 64 Master summary status
0 — LBSFxxx is not requesting service
1 — LBSFxxx is requesting service
7 128 Operation status summary
0 — No operation status conditions have occurred

1 - One or more operation status conditions have occurred

Examples:

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
182

0000003 — *STB?
0000004 « +0

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
183

*TRG/nquery/

Syntax:
Most common forms:
*TRG

Long forms:
*TRG

Description:

This command triggers the LBSFxx sensor if it is waiting for a trigger.

Common Error Messages:

e If TRIGger[1]:SOURce is not set to BUS error -211 “Trigger ignored” error is generated
e If the sensor is not waiting for a trigger then -211 “Trigger ignored” is generated

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
184

*TST?/qonly/

Syntax:
Most common forms:
*TST?

Long forms:
*TST?

Description:

This command causes the LBSFxxx to run a self-test. The result of the self-test is returned. If the return value =0
then no fault was found. If the return value # O or it is 1 then a fault was found. This command requires
more than 20 seconds to complete.

Examples:

0000277 - *TST?
0000278 —~ O

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
185

*WAI/nquery/

Syntax:
Most common forms:
*WAI

Long forms:
*WAI

Description:

This command causes the sensor to wait for one of the following:

e All pending operations complete
e Device clear is received
e Power is cycled

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
186

DCL

This is the device clear command. When a DCL is issued to these sensors:

® All pending operations are halted and the instrument is placed in an idle mode
® The parser is reset

® The return/measurement output buffer is cleared

LBSFXX Series True-RMS Power Sensor Programming Guide v1

	Theory of Operation
	Introduction to the SCPI Language
	Allowable characters:
	Command structure:
	Command
	Parameters

	Command Conventions

	Basic Power Measurements
	Default Condition
	Measurement Strategies
	Measurement examples
	Free Run Mode (INIT:CONT=1)
	Single Initiation Mode (INIT:CONT=0)

	Interface Information
	LBSFxx Programming Reference
	Measurement Commands
	CONFigure[1]?
	CONFigure[1] or CONFigure[1][:SCALar][:POWer:AC]
	FETCh[1]?or FETCh[1][:SCALar][:POWer:AC]?
	MEASure[1]? or MEASure[1] [:SCALar][:POWer:AC]?
	READ[1]? or READ[[1] [:SCALar][:POWer:AC]?

	Calculate Commands
	CALC:FEED[?] or CALCulate[1]:FEED[?]
	CALC:MATH[?]or CALCulate[1]:MATH:EXPRession[?]
	CALC:MATH:CAT? or CALCulate:MATH:EXPRession:CATalog?
	CALC:LIM:CLEar:AUTO[?] or CALCulate[1]:LIMit:CLEar:AUTO{?}
	CALC:LIM:CLE[?] or CALCulate[1]:LIMit:CLEar[:IMMediate][?]
	CALC:LIM:FAIL? or CALCulate[1]:LIMit:FAIL?
	CALC:LIM:FCO? or CALCulate[1]:LIMit:FCOunt?
	CALC:LIM:LOW[?] or :CALCulate[1]:LIMit:LOWer[:DATA][?]
	CALC:LIM:STAT[?] or CALCulate[1]:LIMit:STATe[?]
	CALC:LIM:UPP[?] or CALCulate[1]:LIMit:UPPer:DATA[?]

	Calibration
	CAL:ZERO:AUTO or CALibration1:ZERO:AUTO
	CAL:ZERO:TYPE or CALibration1:ZERO:TYPE
	CAL or CALibration1[:ALL]

	Format
	FORMat[:READings]:BORDer
	FORMat[:READings][:DATA]

	Initiate
	INITiate:CONTinuous
	INITiate1:CONTinuous
	INITiate:CONTinuous:ALL
	INITiate1:CONTinuous:ALL
	INITiate:CONTinuous:SEQuence
	INITiate1:CONTinuous:SEQuence
	INITiate:CONTinuous:SEQuence1
	INITiate1:CONTinuous:SEQuence1
	INITiate[:IMMediate]/nquery/
	INITiate1[:IMMediate]/nquery/
	INITiate[:IMMediate]:ALL/nquery/
	INITiate1[:IMMediate]:ALL/nquery/
	INITiate[:IMMediate]:SEQuence/nquery/
	INITiate1[:IMMediate]:SEQuence/nquery/
	INITiate[:IMMediate]:SEQuence1/nquery/
	INITiate1[:IMMediate]:SEQuence1/nquery/

	Input
	INPut:TRIGger:IMPedance

	Memory
	MEMory:CATalog:STATe?/qonly/
	MEMory:CATalog:TABLe?/qonly/
	MEMory:CATalog[:ALL]?/qonly/
	MEMory:CLEar:TABLe/nquery/
	MEMory:CLEar[:NAME]/nquery/
	MEMory:FREE:STATe?/qonly/
	MEMory:FREE:TABLe?/qonly/
	MEMory:FREE[:ALL]?/qonly/
	MEMory:NSTates?/qonly/
	MEMory:STATe:CATalog?/qonly/
	MEMory:STATe:DEFine
	MEMory:TABLe:FREQuency
	MEMory:TABLe:FREQuency:POINts?/qonly/
	MEMory:TABLe:GAIN[:MAGNitude]
	MEMory:TABLe:GAIN[:MAGNitude]:POINts?/qonly/
	MEMory:TABLe:MOVE/nquery/
	MEMory:TABLe:SELect

	Output
	OUTPut:RECorder:FEED
	OUTPut:RECorder1:FEED
	OUTPut:RECorder:FILTer
	OUTPut:RECorder1:FILTer
	OUTPut:RECorder:LIMit:LOWer
	OUTPut:RECorder1:LIMit:LOWer
	OUTPut:RECorder:LIMit:UPPer
	OUTPut:RECorder1:LIMit:UPPer
	OUTPut:RECorder:STATe
	OUTPut:RECorder1:STATe
	OUTPut:TRIGger:SLOPe
	OUTPut:TRIGger[:STATe]

	Sense
	Averaging Commands Overview
	[SENSe]:AVERage:COUNt
	SENSe1:AVERage:COUNt
	[SENSe]:AVERage:COUNt:AUTO
	SENSe1:AVERage:COUNt:AUTO
	[SENSe]:AVERage:SDETect
	SENSe1:AVERage:SDETect
	[SENSe]:AVERage[:STATe]
	SENSe1:AVERage[:STATe]
	[SENSe]:BUFFer:COUNt
	SENSe1:BUFFer:COUNt
	[SENSe]:CORRection:CSET2:STATe
	SENSe1:CORRection:CSET2:STATe
	[SENSe]:CORRection:CSET2[:SELect]
	SENSe1:CORRection:CSET2[:SELect]
	[SENSe]:CORRection:FDOFfset[:INPut][:MAGNitude]?/qonly/
	SENSe1:CORRection:FDOFfset[:INPut][:MAGNitude]?/qonly/
	[SENSe]:CORRection:GAIN4[:INPut][:MAGNitude]?/qonly/
	SENSe1:CORRection:GAIN4[:INPut][:MAGNitude]?/qonly/
	[SENSe]:CORRection:DCYCle:STATe
	SENSe1:CORRection:DCYCle:STATe
	[SENSe]:CORRection:DCYCle[:INPut][:MAGNitude]
	SENSe1:CORRection:DCYCle[:INPut][:MAGNitude]
	[SENSe]:CORRection:GAIN3:STATe
	SENSe1:CORRection: GAIN3:STATe
	[SENSe]:CORRection: GAIN3[:INPut][:MAGNitude]
	SENSe1:CORRection: GAIN3 [:INPut][:MAGNitude]
	[SENSe]:CORRection:GAIN2:STATe
	SENSe1:CORRection:GAIN2:STATe
	[SENSe]:CORRection:GAIN2[:INPut][:MAGNitude]
	SENSe1:CORRection:GAIN2[:INPut][:MAGNitude]
	SENSe:CORRection:MLPad[:INPut]:STATe
	SENSe1:CORRection:MLPad[:INPut]:STATe
	[CALC:FEED is automatically set to “POW:AVER ON SWEEP1”
	[SENSe]:FREQuency[:CW]
	SENSe1:FREQuency[:CW]
	[SENSe]:FREQuency[:FIXed]
	SENSe1:FREQuency[:FIXed]
	[SENSe]:FREQuency[:CW|FIXED]:STARt
	SENSe1:FREQuency[:CW|FIXED]:STARt
	[SENSe]:FREQuency[:CW|FIXED]:STOP
	SENSe1:FREQuency[:CW|FIXED]:STOP
	[SENSe]:FREQuency[:CW|FIXED]:STEP
	SENSe1:FREQuency[:CW|FIXED]:STEP
	[SENSe]:MRATe
	SENSe1:MRATe
	[SENSe]:SPEed
	SENSe1:SPEed
	[SENSe]:POWer:AC:RANGe:AUTO
	SENSe1:POWer:AC:RANGe:AUTO
	[SENSe]:POWer:AC:RANGe
	SENSe1:POWer:AC:RANGe
	[SENSe]:TEMPerature?/qonly/
	SENSe1:TEMPerature?/qonly/

	Service
	SERVice:BIST:TRIGger:LEVel:STATe?/qonly/
	SERVice:OPTion/qonly/
	SERVice:SECure:ERASe/nquery/
	SERVice:SENSor:CDATe?/qonly/
	SERVice:SENSor1:CDATe?/qonly/
	SERVice:SENSor:CDUEdate
	SERVice:SENSor1:CDUEdate
	SERVice:SENSor:CPLace
	SERVice:SENSor1:CPLace
	SERVice:SENSor:FREQuency:MAXimum?/qonly/
	SERVice:SENSor1:FREQuency:MAXimum?/qonly/
	SERVice:SENSor:FREQuency:MINimum?/qonly/
	SERVice:SENSor1:FREQuency:MINimum?/qonly/
	SERVice:SENSor:POWer:AVERage:MAXimum?/qonly/
	SERVice:SENSor1:POWer:AVERage:MAXimum?/qonly/
	SERVice:SENSor:POWer:PEAK:MAXimum?/qonly/
	SERVice:SENSor1:POWer:PEAK:MAXimum?/qonly/
	SERVice:SENSor:POWer:USABle:MAXimum?/qonly/
	SERVice:SENSor1:POWer:USABle:MAXimum?/qonly/
	SERVice:SENSor:POWer:USABle:MINimum?/qonly/
	SERVice:SENSor1:POWer:USABle:MINimum?/qonly/
	SERVice:SENSor:RADC?/qonly/
	SERVice:SENSor1:RADC?/qonly/
	SERVice:SENSor:SNUMber?/qonly/
	SERVice:SENSor1:SNUMber?/qonly/
	SERVice:SENSor:TNUMber
	SERVice:SENSor1:TNUMber
	SERVice:SENSor:TYPE?/qonly/
	SERVice:SENSor1:TYPE?/qonly/
	SERVice:VERSion:PROCessor?/qonly/
	SERVice:VERSion:SYSTem:DFU/nquery/
	SERVice:VERSion:SYSTem?/qonly/

	Status
	STATus:PRESet/nquery/

	System
	SYSTem:BLINk/nquery/
	SYSTem:BLINk1/nquery/
	SYSTem:COMMunicate:SPI:CLOCk
	SYSTem:COMMunicate:USB:ADDRess
	SYSTem:COMMunicate:USB:INTerface
	USB Class Reset

	SYSTem:ERRor?/qonly/
	SYSTem:HELP:HEADers?/qonly/
	DIAG:BOOT:COLD/nquery/
	SYSTem:PRESet/nquery/
	SYSTem:VERSion?/qonly/

	Trigger
	TRIGger:DELay:AUTO
	TRIGger1:DELay:AUTO
	TRIGger[:SEQuence]:DELay:AUTO
	TRIGger:SEQuence1:DELay:AUTO
	TRIGger[:IMMediate]
	TRIGger1[:IMMediate]/nquery/
	TRIGger[:SEQuence]:IMMediate/nquery/
	TRIGger:SEQuence1:IMMediate/nquery/
	TRIGger[:SEQuence]:COUNt
	TRIGger:SEQuence1:COUNt
	TRIGger[:SEQuence]:DELay
	TRIGger:SEQuence1:DELay
	TRIGger[:SEQuence]:HOLDoff
	TRIGger:SEQuence1:HOLDoff
	TRIGger[:SEQuence]:SLOPe
	TRIGger:SEQuence1:SLOPe
	TRIGger:SOURce
	TRIGger[1]:SOURce
	TRIGger[:SEQuence]:SOURce
	TRIGger:SEQuence1:SOURce

	Unit
	UNIT:POWer
	UNIT1:POWer

	Standard SCPI commands
	*CLS/nquery/
	*ESE
	*ESR?/qonly/
	*IDN?/qonly/
	*OPC
	*OPT?/qonly/
	*RCL/nquery/
	*RST/nquery/
	*SAV/nquery/
	*SRE
	*STB?/qonly/
	*TRG/nquery/
	*TST?/qonly/
	*WAI/nquery/

	DCL

