
1

LadyBug Technologies LLC

Programming Guide

LBSF Series True-RMS

Power Sensors

LadyBug Technologies LLC

1/10/2025

This document is a reference programming guide for the True-RMS versions of the LBSFxx series’ USB, LAN,
SPI, I2C interfaced power sensors.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 2

LBSFXX Series True-RMS Power Sensor Programming Guide v1

What is Covered in this Manual

This manual serves as a programming and command reference for LBSFxxx power sensors. It is intended to assist

in the development of automated testing systems or for users making measurements within various testing

environments. Additional information is included to support full command functionality.

Please refer to the PMA-12 documentation for information on our power measurement software for general
purposes.

 Theory of operation

 Specific command format and details

 Measurement examples

 General information about the SCPI command language

 Command utilization for optional sensor features

 Command information regarding the sensor’s interface and interface options

 Integration with MATLAB, Keysight and National Instruments applications and libraries

Where to find additional information

- LadyBug Website
- Specific sensors data sheet
- Option SPI Guide for SF series products (covers SPI and I2C) (available 6/25)
- Option 001 Analog recorder out guide for SF series products (available 6/25)
- LadyBug LAN programming guide (available 6/25)
- LadyBug LAN getting started guide(available 6/25)
- LadyBug sales or Technical support
- PMA-12 software guide

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 3

LBSFXX Series True-RMS Power Sensor Programming Guide v1

Contents
Theory of Operation .. 11

Introduction to the SCPI Language .. 12

Allowable characters: .. 12

Command structure: .. 12

Command .. 12

Parameters .. 12

Command Conventions ... 13

Basic Power Measurements .. 14

Default Condition .. 14

Measurement Strategies ... 15

Measurement examples .. 16

Free Run Mode (INIT:CONT=1) .. 16

Single Initiation Mode (INIT:CONT=0) ... 17

Interface Information .. 18

LBSFxx Programming Reference .. 19

Measurement Commands ... 20

CONFigure[1]? ... 21

CONFigure[1] or CONFigure[1][:SCALar][:POWer:AC] ... 23

FETCh[1]?or FETCh[1][:SCALar][:POWer:AC]? ... 24

MEASure[1]? or MEASure[1] [:SCALar][:POWer:AC]? ... 26

READ[1]? or READ[[1] [:SCALar][:POWer:AC]? ... 27

Calculate Commands ... 29

CALC:FEED[?] or CALCulate[1]:FEED[?] ... 30

CALC:MATH[?]or CALCulate[1]:MATH:EXPRession[?] ... 30

CALC:MATH:CAT? or CALCulate:MATH:EXPRession:CATalog? .. 30

CALC:LIM:CLEar:AUTO[?] or CALCulate[1]:LIMit:CLEar:AUTO{?} .. 31

CALC:LIM:CLE[?] or CALCulate[1]:LIMit:CLEar[:IMMediate][?] ... 35

CALC:LIM:FAIL? or CALCulate[1]:LIMit:FAIL?... 36

CALC:LIM:FCO? or CALCulate[1]:LIMit:FCOunt? ... 37

CALC:LIM:LOW[?] or :CALCulate[1]:LIMit:LOWer[:DATA][?] ... 38

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 4

LBSFXX Series True-RMS Power Sensor Programming Guide v1

CALC:LIM:STAT[?] or CALCulate[1]:LIMit:STATe[?] ... 39

CALC:LIM:UPP[?] or CALCulate[1]:LIMit:UPPer:DATA[?] .. 40

Calibration ... 41

CAL:ZERO:AUTO or CALibration1:ZERO:AUTO .. 42

CAL:ZERO:TYPE or CALibration1:ZERO:TYPE ... 43

CAL or CALibration1[:ALL] .. 44

Format ... 45

FORMat[:READings]:BORDer ... 46

FORMat[:READings][:DATA] .. 47

Initiate ... 48

INITiate:CONTinuous ... 49

INITiate1:CONTinuous ... 49

INITiate:CONTinuous:ALL .. 49

INITiate1:CONTinuous:ALL .. 49

INITiate:CONTinuous:SEQuence .. 49

INITiate1:CONTinuous:SEQuence .. 49

INITiate:CONTinuous:SEQuence1 .. 49

INITiate1:CONTinuous:SEQuence1 .. 49

INITiate[:IMMediate]/nquery/ .. 52

INITiate1[:IMMediate]/nquery/ .. 52

INITiate[:IMMediate]:ALL/nquery/.. 52

INITiate1[:IMMediate]:ALL/nquery/.. 52

INITiate[:IMMediate]:SEQuence/nquery/ ... 52

INITiate1[:IMMediate]:SEQuence/nquery/ ... 52

INITiate[:IMMediate]:SEQuence1/nquery/ ... 52

INITiate1[:IMMediate]:SEQuence1/nquery/ ... 52

Input .. 54

INPut:TRIGger:IMPedance ... 54

Memory ... 55

MEMory:CATalog:STATe?/qonly/ .. 56

MEMory:CATalog:TABLe?/qonly/ .. 57

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 5

LBSFXX Series True-RMS Power Sensor Programming Guide v1

MEMory:CATalog[:ALL]?/qonly/ .. 58

MEMory:CLEar:TABLe/nquery/ ... 59

MEMory:CLEar[:NAME]/nquery/... 60

MEMory:FREE:STATe?/qonly/ ... 61

MEMory:FREE:TABLe?/qonly/ ... 62

MEMory:FREE[:ALL]?/qonly/ ... 63

MEMory:NSTates?/qonly/ ... 64

MEMory:STATe:CATalog?/qonly/ .. 65

MEMory:STATe:DEFine .. 66

MEMory:TABLe:FREQuency .. 67

MEMory:TABLe:FREQuency:POINts?/qonly/ .. 69

MEMory:TABLe:GAIN[:MAGNitude] .. 70

MEMory:TABLe:GAIN[:MAGNitude]:POINts?/qonly/ ... 72

MEMory:TABLe:MOVE/nquery/ .. 73

MEMory:TABLe:SELect .. 74

Output ... 75

OUTPut:RECorder:FEED ... 76

OUTPut:RECorder1:FEED ... 76

OUTPut:RECorder:FILTer ... 77

OUTPut:RECorder1:FILTer ... 77

OUTPut:RECorder:LIMit:LOWer .. 81

OUTPut:RECorder1:LIMit:LOWer .. 81

OUTPut:RECorder:LIMit:UPPer .. 81

OUTPut:RECorder1:LIMit:UPPer .. 81

OUTPut:RECorder:STATe ... 84

OUTPut:RECorder1:STATe ... 84

OUTPut:TRIGger:SLOPe ... 85

OUTPut:TRIGger[:STATe] ... 87

Sense.. 88

Averaging Commands Overview ... 89

[SENSe]:AVERage:COUNt ... 92

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 6

LBSFXX Series True-RMS Power Sensor Programming Guide v1

SENSe1:AVERage:COUNt ... 92

[SENSe]:AVERage:COUNt:AUTO .. 94

SENSe1:AVERage:COUNt:AUTO... 94

[SENSe]:AVERage:SDETect ... 96

SENSe1:AVERage:SDETect ... 96

[SENSe]:AVERage[:STATe] ... 98

SENSe1:AVERage[:STATe] .. 98

[SENSe]:BUFFer:COUNt ... 100

SENSe1:BUFFer:COUNt .. 100

[SENSe]:CORRection:CSET2:STATe .. 100

SENSe1:CORRection:CSET2:STATe... 100

[SENSe]:CORRection:CSET2[:SELect] ... 100

SENSe1:CORRection:CSET2[:SELect] .. 100

[SENSe]:CORRection:FDOFfset[:INPut][:MAGNitude]?/qonly/ ... 100

SENSe1:CORRection:FDOFfset[:INPut][:MAGNitude]?/qonly/ ... 101

[SENSe]:CORRection:GAIN4[:INPut][:MAGNitude]?/qonly/ ... 101

SENSe1:CORRection:GAIN4[:INPut][:MAGNitude]?/qonly/ .. 101

[SENSe]:CORRection:DCYCle:STATe .. 104

SENSe1:CORRection:DCYCle:STATe ... 104

[SENSe]:CORRection:DCYCle[:INPut][:MAGNitude] .. 104

SENSe1:CORRection:DCYCle[:INPut][:MAGNitude] ... 104

[SENSe]:CORRection:GAIN3:STATe .. 104

SENSe1:CORRection: GAIN3:STATe ... 104

[SENSe]:CORRection: GAIN3[:INPut][:MAGNitude] .. 104

SENSe1:CORRection: GAIN3 [:INPut][:MAGNitude] .. 104

[SENSe]:CORRection:GAIN2:STATe .. 107

SENSe1:CORRection:GAIN2:STATe .. 107

[SENSe]:CORRection:GAIN2[:INPut][:MAGNitude] ... 107

SENSe1:CORRection:GAIN2[:INPut][:MAGNitude] .. 107

SENSe:CORRection:MLPad[:INPut]:STATe ... 109

SENSe1:CORRection:MLPad[:INPut]:STATe ... 109

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 7

LBSFXX Series True-RMS Power Sensor Programming Guide v1

[CALC:FEED is automatically set to “POW:AVER ON SWEEP1” ... 111

[SENSe]:FREQuency[:CW] .. 111

SENSe1:FREQuency[:CW] .. 111

[SENSe]:FREQuency[:FIXed] ... 111

SENSe1:FREQuency[:FIXed] ... 111

[SENSe]:FREQuency[:CW|FIXED]:STARt .. 113

SENSe1:FREQuency[:CW|FIXED]:STARt .. 113

[SENSe]:FREQuency[:CW|FIXED]:STOP ... 113

SENSe1:FREQuency[:CW|FIXED]:STOP .. 113

[SENSe]:FREQuency[:CW|FIXED]:STEP .. 113

SENSe1:FREQuency[:CW|FIXED]:STEP .. 113

[SENSe]:MRATe.. 117

SENSe1:MRATe .. 117

[SENSe]:SPEed ... 117

SENSe1:SPEed .. 117

[SENSe]:POWer:AC:RANGe:AUTO ... 119

SENSe1:POWer:AC:RANGe:AUTO.. 119

[SENSe]:POWer:AC:RANGe .. 119

SENSe1:POWer:AC:RANGe .. 119

[SENSe]:TEMPerature?/qonly/ .. 121

SENSe1:TEMPerature?/qonly/ .. 121

Service ... 122

SERVice:BIST:TRIGger:LEVel:STATe?/qonly/ ... 123

SERVice:OPTion/qonly/ ... 124

SERVice:SECure:ERASe/nquery/ .. 125

SERVice:SENSor:CDATe?/qonly/ .. 126

SERVice:SENSor1:CDATe?/qonly/ .. 126

SERVice:SENSor:CDUEdate .. 127

SERVice:SENSor1:CDUEdate .. 127

SERVice:SENSor:CPLace ... 128

SERVice:SENSor1:CPLace ... 128

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 8

LBSFXX Series True-RMS Power Sensor Programming Guide v1

SERVice:SENSor:FREQuency:MAXimum?/qonly/ .. 129

SERVice:SENSor1:FREQuency:MAXimum?/qonly/ .. 129

SERVice:SENSor:FREQuency:MINimum?/qonly/ ... 129

SERVice:SENSor1:FREQuency:MINimum?/qonly/ ... 129

SERVice:SENSor:POWer:AVERage:MAXimum?/qonly/ ... 130

SERVice:SENSor1:POWer:AVERage:MAXimum?/qonly/ ... 130

SERVice:SENSor:POWer:PEAK:MAXimum?/qonly/ ... 131

SERVice:SENSor1:POWer:PEAK:MAXimum?/qonly/ ... 131

SERVice:SENSor:POWer:USABle:MAXimum?/qonly/ .. 132

SERVice:SENSor1:POWer:USABle:MAXimum?/qonly/ .. 132

SERVice:SENSor:POWer:USABle:MINimum?/qonly/ ... 132

SERVice:SENSor1:POWer:USABle:MINimum?/qonly/ ... 132

SERVice:SENSor:RADC?/qonly/ ... 133

SERVice:SENSor1:RADC?/qonly/ ... 133

SERVice:SENSor:SNUMber?/qonly/ ... 134

SERVice:SENSor1:SNUMber?/qonly/ ... 134

SERVice:SENSor:TNUMber .. 135

SERVice:SENSor1:TNUMber .. 135

SERVice:SENSor:TYPE?/qonly/ ... 136

SERVice:SENSor1:TYPE?/qonly/ ... 136

SERVice:VERSion:PROCessor?/qonly/ ... 137

SERVice:VERSion:SYSTem:DFU/nquery/ .. 138

SERVice:VERSion:SYSTem?/qonly/ .. 139

Status ... 140

STATus:PRESet/nquery/ .. 144

System ... 145

SYSTem:BLINk/nquery/ ... 146

SYSTem:BLINk1/nquery/ ... 146

SYSTem:COMMunicate:SPI:CLOCk .. 147

SYSTem:COMMunicate:USB:ADDRess .. 148

SYSTem:COMMunicate:USB:INTerface ... 149

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 9

LBSFXX Series True-RMS Power Sensor Programming Guide v1

USB Class Reset .. 149

SYSTem:ERRor?/qonly/.. 150

SYSTem:HELP:HEADers?/qonly/ .. 151

DIAG:BOOT:COLD/nquery/ .. 153

SYSTem:PRESet/nquery/ ... 154

SYSTem:VERSion?/qonly/ .. 155

Trigger .. 156

TRIGger:DELay:AUTO ... 157

TRIGger1:DELay:AUTO ... 157

TRIGger[:SEQuence]:DELay:AUTO ... 157

TRIGger:SEQuence1:DELay:AUTO ... 157

TRIGger[:IMMediate] ... 158

TRIGger1[:IMMediate]/nquery/ .. 158

TRIGger[:SEQuence]:IMMediate/nquery/ ... 158

TRIGger:SEQuence1:IMMediate/nquery/ ... 158

TRIGger[:SEQuence]:COUNt .. 159

TRIGger:SEQuence1:COUNt .. 159

TRIGger[:SEQuence]:DELay ... 162

TRIGger:SEQuence1:DELay .. 162

TRIGger[:SEQuence]:HOLDoff ... 163

TRIGger:SEQuence1:HOLDoff .. 163

TRIGger[:SEQuence]:SLOPe ... 164

TRIGger:SEQuence1:SLOPe ... 164

TRIGger:SOURce .. 165

TRIGger[1]:SOURce .. 165

TRIGger[:SEQuence]:SOURce .. 165

TRIGger:SEQuence1:SOURce ... 165

Unit .. 167

UNIT:POWer .. 168

UNIT1:POWer .. 168

Standard SCPI commands .. 169

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 10

LBSFXX Series True-RMS Power Sensor Programming Guide v1

*CLS/nquery/ ... 170

*ESE ... 171

*ESR?/qonly/ ... 172

*IDN?/qonly/ ... 173

*OPC .. 174

*OPT?/qonly/ .. 175

*RCL/nquery/... 176

*RST/nquery/... 177

*SAV/nquery/ .. 178

*SRE ... 179

*STB?/qonly/ ... 181

*TRG/nquery/ .. 183

*TST?/qonly/ ... 184

*WAI/nquery/ .. 185

DCL ... 186

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 11

LBSFXX Series True-RMS Power Sensor Programming Guide v1

Theory of Operation
LadyBug LBSF series power sensors convert the RF signal into a digital value that is delivered over its interfaces.
The sensor is calibrated with first tier traceable standards. The architecture consists of several key components:

 Multipath Diode Detector: Provides initial signal detection and processing

 Analog-to-Digital Converters: Convert signals to digital format for further processing

 Digital Processing Unit(s): Calculates measurements and applies calibration

 Interface System: Enables communication with external devices and software

Key capabilities of the LBSF series include:

 RMS Responding: Measurements represent the RMS value of the signal capture
 Active Thermal Stabilization: Maintains accuracy across the specified temperature range without user

calibration
 Continuous Measurement: Provides uninterrupted measurements without drift
 Measurement Integrity: Calibrated using first-tier traceable standards
 Interfaces: USBTMC (USB Test and Measurement Class), USB HID; Optional: TTL (SPI, I2C)
 Additional IO: Trigger IN, OUT Optional: Analog Recorder Out
 Extended Temperature Option: Lowers minimum operating temperature to -55C

The sensors are designed for use in automated testing systems, however they are suitable for general
measurement use also.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 12

LBSFXX Series True-RMS Power Sensor Programming Guide v1

Introduction to the SCPI Language

Standard Commands for Programmable Instruments (SCPI) is an ASCII-based instrument command language

designed for test and measurement instruments. SCPI commands are based on a hierarchical structure. Syntax,

allowable characters etc. are described below:

Allowable characters:

* ? . , + - :

“ “ or space

A-Z, a-z, 0-9

Note that SCPI commands are not case sensitive, and consecutive spaces are treated as one single space

Command structure:

All communication (or commands) sent to the sensor are composed of one or two parts. These parts are the

command and the parameters. Commands are separated from parameters by a single space. So, the headers”

SENS” and “FREQ” cab be combined with Parameter “10.0e6” to create the complete command “SENS:FREQ

10.0e6”

Command

Commands are composed of one or more headers. A header is 3-12 characters in length. Headers can be

concatenated using a colon.

• Single header – FREQ?
• Concatenated headers – SENS:FREQ:CW

Parameters

Parameters are limited to floating point numbers, integers, Boolean and text. The number and types of

parameters are specific to each command. Parameters are concatenated by commas

• A single parameter 10
• Multiple parameters 10, 3
• Another example of multiple parameters 10.0e6, 3.0

The following command will set the frequency to 1.02GHz. Note that the command is FREQ and the parameter is

1.02E+9 and they are separated by a space.

FREQ 1.02E+9

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 13

LBSFXX Series True-RMS Power Sensor Programming Guide v1

Command Conventions

This manual uses the most common conventions for expressing SPCI commands, the conventions are:

 Brackets [] identify optional headers of a command. Brackets may be nested. Any header designated as

optional may be omitted. Consider the following definition of a command:

[SENSe[1]:]FREQuency[:CW|:FIXed] <numberic_value>

Given this definition the following commands are equivalent:

FREQUENCY 100MHZ omitting all optional headers

SENSE1:FREQUENCY 100MHZ including the SENSE[1] header

 A vertical line | is used in the definitions to delineate mutually exclusive portions. All of the following are

acceptable and equivalent. In these examples the focus is on the [:CW|:FIXed]portion of the command:

[SENSe[1]:]FREQuency[:CW|:FIXed]

FREQ:CW selecting the [:CW] option

FREQ:FIXED selecting the [:FIXed] option

 Upper and lower case letters in a definition delineates the short form (or abbreviation) and the long

form of a header. The upper case letters indicate the short or abbreviated form of a header. The entire

header (upper and lower case) represents the long form of the header. Consider the following command

definition:

[SENSe[1]:]FREQuency[:CW|:FIXed]

Given the previous command definition, the following are equivalent:

FREQUENCY 100.0E+6 uses a long header, excludes all options

SENSE1:FREQUENCY 100MHZ includes the optional [1]

 In some cases units may be appended to a numeric value. However, this is always specific to the command.

For instance:

FREQ 1.3MHZ includes the units

FREQ 1.3E+6 does not include the units

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 14

LBSFXX Series True-RMS Power Sensor Programming Guide v1

Basic Power Measurements
This section is a brief overview on how to make basic power measurements programmatically with LBSFxx

sensors. The Ladybug Interactive IO application included with PMA-12 can be used to perform these examples.

Default Condition
When making power measurements programmatically, it is important to know the condition of all settings that

affect the power measurement. The measurement examples provided here include commands to set some of

these parameters. Below are brief explanations for some of the pertinent settings, for full details of these

settings refer to SYST:PRES and CONFifure command sections.

SYST:PRES DEF command sets the following:

Setting Equivalent command

Set the trigger source to immediate, (disabling external triggering) TRIG:SOUR Imm

Set Averaging to 4 (Note will be changed by automatic averaging) SENS:SVER:COUN 4

Turn on automatic averaging (Adjust averaging based actual on power level) SENS:AVER:COUN Auto

Turn on averaging SENS:AVER:STAT On

Turn on step detection SENS:AVER:SDET On

Set continuous initiation INIT:CONT On

Turn on automatic trigger delay (relates to the external trigger if used) TRIG:DEL:AUTO On

Set Trigger delay (Delay after the trigger event to measurement start) TRIG:DEL 0

NOTE: *RST commands is identical to SYST:PRES DEF except *RST sets the following:

Set continuous initiation (*RST Sets to off) INIT:CONT Off

Note: This is a partial list of conditions after *RST and SYST:PRES

CONGigure sets the following:

Setting Equivalent command

Set the trigger source to immediate, (disabling external triggering) TRIG:SOUR Imm

Turn on automatic averaging SENS:AVER:COUN Auto

Turn on averaging SENS:AVER:STAT On

Turn off continuous triggering (Sets the sensor to single trigger) INIT:CONT Off

Turn on automatic trigger delay (relates to the external trigger if used) TRIG:DEL:AUTO On

Note: Careful consideration should be taken when using configure for automated measurements because it can

result in unknown measurement time.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 15

LBSFXX Series True-RMS Power Sensor Programming Guide v1

Measurement Strategies
A basic understanding of how the power sensor processes measurements is useful when planning how to make

programmatic measurements. Here are a few important considerations.

 Number of averages (or capture window size). Default number of averages is 4 = (~144ms) see the

MRAT command for timing details. Note: more averaging will be required to achieve accuracy at low

power levels.

 Frequency of the signal. This must be set so that the power sensor utilizes the proper calibration data.

 Certain settings that affect the measurement such as automatic averaging (AVER:COUN:AUTO on/off),

step detection (SDET on/off). It is important to understand these settings and make sure they are set

properly prior to starting the measurement.

 Measurement start point timing (Review in Figure 1)

o Free run mode with FETCh?, returns the power level that occurred right before the

measurement (A). This is often used when continuous measurements are being made. The

measurement is returned immediately, and consists of the most recent number of averages

from a circular buffer.

o Start a measurement and return data after the measurement is complete using READ? (B). This

is often used programmatically, for example a source is set, allowed to become stable, and then

the measurement is started.

o When even greater starting point accuracy is required, READ? With external triggering can be

utilized (C). After the measurement is initialized, the sensor begins waiting for a trigger to occur,

when the trigger occurs the measurement is processed. See the Triggering section for additional

details.

Figure 1 - Measurement Pictograms

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 16

LBSFXX Series True-RMS Power Sensor Programming Guide v1

Measurement examples
Two basic methods can be used to make power measurements with LBSFxxx power sensors.

 Free Run mode (continuous initiation): The sensor continuously takes readings and places them into a

circular buffer for averaging and collection as requested (Figure 1A).

 Single Initiation: Used to capture power readings at a specific starting point, average them into a

measurement, and return it when complete (Figure 1B & 1C).

There are three measurement commands that can be used to make the power measurement.

 FETCh? Calculates and returns a measurement that has already been initiated. Note: The measurement

can be continuously initiated as shown in Figure 1A, or with single initiation.

 READ?, Initiates, processes and returns a measurement. Provides a controlled starting point and is

recommended if triggering is planned for the measurement.

 MEAS?, Uses dynamic settings (adjusts averaging) to make a measurement. NOTE: This is a single

initiation command that can take up to a minute depending upon the signal level and other settings.

Prior to making any measurement a few commands must be run to set up the sensor. Other than MEAS?, the

examples below include settings that turn off automatic settings to allow full control of the measurements.

Free Run Mode (INIT:CONT=1)
When the sensor is placed in continuous initiation (Free Run mode) it continuously takes readings and places

them into a circular buffer. FETCh? averages and returns measurements immediately from the buffered data.

This measurement can be viewed ad as a “trailing” measurement, and is the default method when using

LadyBug’s PMA-12 software.

Using FETCh?

- SYST:PRES DEF Set the sensor to a known condition

- AVER:COUN:AUTO OFF Disable Automatic averaging

- SENS:AVER:SDET OFF Turn off Step Detection

- INIT:CONT ON Assure that continuous initiation is on (sets free run mode)

- SENS:AVER:COUN 5 Set to 5 averages (use your own number)

- FREQ 2600 MHz Set to 2.6 GHz (use your own frequency)

- FETCh? Make the measurement

- FETCh? Repeat as required

- FETC? The “h” is not required

Note: The command to turn on INIT:CONT is un-necessary because it was set to On by SYST:PRES, it is shown for

explanatory purposes. However some programmers consider it a good practice to assure the setting is correct

when making the measurement.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 17

LBSFXX Series True-RMS Power Sensor Programming Guide v1

Single Initiation Mode (INIT:CONT=0)
When the sensor is placed in single initiation mode it must be initialized to start a measurement. Unlike

continuous initiation mode, the return is not immediate because the readings are taken after initialization. This

type of measurement is ideal when a measurement starting point is important.

Using READ?

READ? initializes the measurement and then returns it after it is complete.

- SYST:PRES DEF Set the sensor to a known condition

- AVER:COUN:AUTO OFF Disable Automatic averaging

- SENS:AVER:SDET OFF Turn off Step Detection

- INIT:CONT OFF Turn off continuous initiation

- SENS:AVER:COUN 5 Set to 5 averages (use your own number)

- FREQ 2600 MHz Set to 2.6 GHz (use your own frequency)

- READ? Takes and returns the measurement

- READ? Takes and returns the measurement

Using READ? with an external trigger

- SYST:PRES DEF Set the sensor to a known condition

- AVER:COUN:AUTO OFF Disable Automatic averaging

- SENS:AVER:SDET OFF Turn off Step Detection

- INIT:CONT OFF Turn off continuous initiation

- TRIG:SOUR EXT Change the trigger to external

- SENS:AVER:COUN 5 Set to 5 averages (use your own number)

- FREQ 2600 MHz Set to 2.6 GHz (use your own frequency)

- READ?

Initiates (starts) the measurement, and waits for a trigger, then processes and returns the measurement.

Using MEAS?

MEAS? is an automatic measurement that uses the settings established by CONFigure. There is a disadvantage in

using MEAS? in automated test environments that should be considered. The time to take a measurement is

determined automatically by the sensor. It could take up to 60 seconds if no RF power has been applied to the

sensor. This variable time can be problematic in ATE systems, it is usually preferred to understand the signal and

set the parameters accordingly when possible.

- FREQ 2600 MHz Set to 2.6 GHz (use your own frequency)

- MEAS? Make the measurement

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 18

LBSFXX Series True-RMS Power Sensor Programming Guide v1

Interface Information
General:

The standard interface on LBSFxxx power sensors is USB. The USB Interface can be either USB HID or USBTMC.

Optional HiSLIP LAN, SPI and I2C TTL interfaces are also available. All of these use the same command set, and

are briefly explained here. Please refer to the specific guides for detailed usage of the Optional Interfaces.

The standard interface for LBSFxxx power sensors is USB, supporting both USB HID and USBTMC communication

protocols. Optional interfaces include HiSLIP LAN, and TTL interfaces SPI & I2C.

This section provides a brief overview of each interface. For detailed instructions on using the optional

interfaces, please refer to their respective guides.

USB Interface:

The USB default condition is USB HID, however this can be changes so that the sensor defaults to USBTMC.

Note: If the sensor has Option MIL installed, the USB interface change will not be stored. Refer to the interface

commands in the System settings.

LAN Interface:

 The Option LAN interface utilizes HiSLIP (High Speed Lan Interface Protocol) and the sensor is powered with PoE

(Power over Ethernet). The sensor and interface are compatible with VISA IO and are “drop-in” usable with

measurement environments such as Keysight, NI and MATLAB.

The bulk of the sensor’s SCPI commands are passed through the LAN interface and processed in the sensor as

detailed in this manual. LAN specific commands are compatible across LadyBug LAN products and are detailed in

the LAN Programming Guide and LAN Getting Started Guides.

The LAN interface includes a web power meter and Interactive IO. These detailed in the LAN Getting Started

Guide.

SPI and I2C Interfaces:

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 19

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFxx Programming Reference
Generally, all commands sharing the same first header (e.g. SENSE or TRIGGER) are related and grouped

together. Each individual command is detailed as to its syntax and usage. Interactions are often noted as well as

some of the more common usage errors associated with the various commands.

The explanation of most commands is accompanied by sequences of commands and their return values. These

sequences (and return values) were executed using the Ladybug Interactive IO. The results were copied directly

from the Ladybug Interactive IO application into this document. The commands sequences can be repeated in

other vendor’s interactive applications that provide USBTMC support (such as National Instrument or Keysight

IO libraries).

In this document, some command descriptions include specific markers such as /nquery/ or /qonly/. These

markers provide additional details about how the command can be used:

 /nquery/: This command is not designed to return data. If it is used as a query, an error will be

generated.

 /qonly/: This command is query-only and cannot be used as a standard command. Attempting to use it

otherwise will result in an error.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 20

LBSFXX Series True-RMS Power Sensor Programming Guide v1

Measurement Commands

The following parameters are common to most measure commands.

Measurement Command Optional Parameters

The following applies to measurement commands. Some commands use these optional parameters to configure

the instrument while other commands use them for comparative purposes. In these comparative cases, if the

parameters passed in do not match current settings one or more errors are generated. When this comparative

process generates errors the measurement process is halted.

Name Description Acceptable Values

<expected value> or

Expected value

Indicates the expected power level.

Not used by the LBSFxx sensors.

Numeric values are dBm or W

depending on the unit setting.

-60dBm to +23dBm

1.000001E-9W to +1.995262E-01W

DEF2 2

<function> Measurement function POW:AC

<resolution> or

Resolution

Sets the resolution. This is used to

determine averaging time if

AVER:COUN:AUTO = TRUE

1, 2, 3, 41

DEF2

<source list> or Source list Measurement channel (@1)3

1 The allowable values are 1, 2, 3 and 4. These values are interpreted to mean 1dB, 0.1dB, 0.01dB and 0.001dB of resolution
respectively.
2 DEF means default. The sensor interprets DEF this mean “use this parameter’s current value”. So that CONF DEF,3 would
not change <expected value>. However, <resolution> would be set to 3.
3 This parameter may only be (@1). It is normally not supplied. If omitted, the value is assumed to be (@1)

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 21

LBSFXX Series True-RMS Power Sensor Programming Guide v1

CONFigure[1]?

Syntax:

Most common form:

CONF?

Long form:

CONFIGURE?

Description:

This command queries the sensor for its current configuration. A single string containing four parameters is

returned. The parameters returned in the string are: <function>, <expected value>, <resolution> and <source

list> respectively.

Example:

In the following example various forms of the command are exercised.

0000115 → CONF?

0000116 ← "POW:AC +2.000000E+01,+4,(@1)"

0000117 → CONFIGURE?

0000118 ← "POW:AC +2.000000E+01,+4,(@1)"

0000119 → CONF1?

0000120 ← "POW:AC +2.000000E+01,+4,(@1)"

0000121 → CONFIGURE1?

0000122 ← "POW:AC +2.000000E+01,+4,(@1)"

Explanation of returned values in line 0000116:

 The various parameters are:

<function> = POW:AC

<expected value> = +2.000000E+01

<resolution> = +4

<source list> =(@1)

 POW:AC is the command or measurement function (average power)

 +2.000000E+01 is the expected value. This is 20dBm and assumes UNIT:POW = DBM. This value is not

used by LBSFxx sensors. However, it is tracked and reported as if it is being used for compatibility reasons.

 +4 indicates a resolution of 0.001dB. The value can range from 1 to 4 inclusive. This parameter is used by

AVER:COUN:AUTO (auto averaging) in conjunction with the measured value to determine the number of

averages or averaging time.

 (@1) indicates the measurement channel. The LBSFxx supports one channel so this will always be (@1)

Reset Condition:

The parameters are sets as shown below upon *RST

 Command function is set to POW:AC

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 22

LBSFXX Series True-RMS Power Sensor Programming Guide v1

 Expected value is set to +20dBm

 Resolution is set to 3

 Source list is set to (@1)

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 23

LBSFXX Series True-RMS Power Sensor Programming Guide v1

CONFigure[1] or CONFigure[1][:SCALar][:POWer:AC]

Syntax:

Most common form:

CONF <expected value>, <resolution>

Long form:

CONFIGURE:SCALAR:POWER:AC <expected value>, <resolution>,(@1)

Description:

This command configures the sensor for measurements.

 Expected value – This parameter tells the sensor the power level the user intends to measure. The value

often passed into the LBSFxx is DEF (default) since this parameter has no effect with the LBSFxx. However,

the value is retained and tracked as if it is used for compatibility reasons.

 Resolution – This parameter sets the number of settled digits for the measurement. The permissible values

are 1, 2, 3 and 4. Where 1 indicates a resolution of 1dB and 4 indicates a resolution of 0.001dB. If DEF is

passed instead of a value then the current value is used.

 Source List - With the LBSFxx sensors this is normally omitted in that it has no affect. However, Source list is

(if included) must be (@1).

Example:

In the following example the configuration is set using the most common form and the full form of the

command. After setting the configuration the configuration is queried to verify its effect.

0000127 → CONF 10,2

0000128 → CONF?

0000129 ← "POW:AC +1.000000E+01,+2,(@1)"

0000130 → CONFIGURE:SCALAR:POWER:AC 15, 1, (@1)

0000131 → CONF?

0000132 ← "POW:AC +1.500000E+01,+1,(@1)"

Additional Information:

After this command is executed, measurements can be made by executing a MEAS? or READ? or an INIT

command followed by a FETCH? command. Executing CONF has side effects in that changes are made to other

settings. These changes are as follows:

INIT:CONT OFF This may affect subsequent FETCH? commands

TRIG:SOUR IMM The sensor to starts a measurement upon receipt of the command.

TRIG:DEL:AUTO ON Enables automatic delay before making a measurement

AVER:COUN:AUTO ON Enables auto averaging.

AVER:STAT ON Enables averaging

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 24

LBSFXX Series True-RMS Power Sensor Programming Guide v1

FETCh[1]?or FETCh[1][:SCALar][:POWer:AC]?

Syntax:

Most common form:

FETC?

Long form:

FETCH1:SCALAR:POWER:AC? <expected value>, <resolution>,(@1)

Description:

Executing this command causes a measurement to be calculated and returns the value to the host (PC) when

queried if the value is valid. The value can be invalidated when:

 *RST is executed

 A measurement is initiated

 Any time a parameter or setting is changed that affects the value is changed.

The returned value is normally text but it can be in a binary form (see the FORMAT commands).

Example:

In this sequence INIT:CONT is set to zero. This means that you must send the INIT command to initiate a new

measurement. If you don’t send an INIT before fetching (INIT:CONT disabled) then you’ll get the most recent

measurement. In lines 53 and 55 the values are repeated. This indicates that you’re getting the same

measurement. This is normal operation for FETCH? with INIT:CONT disabled.

0000045 → INIT:CONT 0

0000046 → INIT:CONT?

0000047 ← 0

0000048 → INIT

0000049 → FETCH?

0000050 ← -3.82458461E+01

0000051 → INIT

0000052 → FETCH?

0000053 ← -3.82517515E+01

0000054 → FETCH?

0000055 ← -3.82517515E+01

If INIT:CONT is enabled you get a new measured value each time. This is because the sensor is supplying a

continuous stream of INITs. This is sometimes referred to as free run mode. This is shown in the following

sequence. You can see that the measured value changes for each FETCH? The sensor is supplying the INIT

commands so that there is no need for the INIT.

0000056 → INIT:CONT 1

0000057 → INIT:CONT?

0000058 ← 1

0000059 → FETCH?

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 25

LBSFXX Series True-RMS Power Sensor Programming Guide v1

0000060 ← -3.82422265E+01

0000061 → FETCH?

0000062 ← -3.82466078E+01

0000063 → FETCH?

0000064 ← -3.82478426E+01

An example of the the long form of FETCH? is shown in the following sequence.

0000078 → CONF?

0000079 ← "POW:AC -3.000000E+01,+4,(@1)"

0000080 → FETCH? -30,4,(@1)

0000081 ← -3.82494301E+01

0000082 → FETCH? -30,4,(@1)

0000083 ← -3.82418777E+01

0000084 → FETCH? -30,4,(@1)

0000085 ← -3.82471240E+01

0000086 → FETCH? -30,3,(@1)

0000087 ← timed out

0000088 → SYST:ERR?

0000089 ← -221,"Settings conflict"

0000090 → FETCH? DEF,DEF,(@1)

0000091 ← -3.82537947E+01

0000092 → FETCH? DEF,DEF,(@1)

0000093 ← -3.82523698E+01

0000094 → FETCH? DEF,DEF,(@1)

0000095 ← -3.82494074E+01

Note that, unlike MEAS?, the parameter information provided in a FETCH? (in lines 80, 82 and 84) does not

change the configuration. Instead the parameters are used to confirm that the current configuration matches

the parameters sent as part of the FETCH? command.

A mismatch between the parameters and the configuration results in “Settings conflict” error as seen in line 89.

This occurred because the resolution in the FETCH? command was set to 3. And as previously demonstrated it is

set to 4. This generated the timeout. Finally, if there is a need to use the full form of the command and you want

to avoid the error message you can use DEF instead of passing explicit values for the parameters.

Common Error Messages:

Error -230 “Data corrupt or stale”: This can happen after a *RST, a measurement is initiated, or as a result of

changing certain parameters (frequency, averaging etc.). These are parameters that can potentially affect the

measurement result.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 26

LBSFXX Series True-RMS Power Sensor Programming Guide v1

MEASure[1]? or MEASure[1] [:SCALar][:POWer:AC]?

Syntax:

Most common form:

MEAS?

Long form:

MEASURE1:SCALAR:POWER:AC? <expected value>, <resolution>,(@1)

Description:

The measure command starts by configuring the sensor using the parameters passed in the command. After the

configuration is complete it continues with the measurement and ends by placing the result in the output buffer.

The process commences when the command is received.

MEASure? = CONFigure + READ?

It is important to remember that MEAS? forces a CONF command to be executed. While the executing CONF

command has no measureable effect on the total measurement time it does carry all of the attendant side

effect. These side effects noted in the CONF command description includes disabling INIT:CONT, setting the

trigger source to immediate and so on.

This command configures the sensor for measurements then makes the measurement.

 Expected value – This parameter tells the sensor the power level the user intends to measure. The value

often passed into the LBSFxx is DEF (default) since this parameter has no effect with the LBSFxx. However,

the value is retained and tracked as if it is used for compatibility reasons.

 Resolution – This parameter sets the number of settled digits for the measurement. The permissible values

are 1, 2, 3 and 4. Where 1 indicates a resolution of 1dB and 4 indicates a resolution of 0.001dB. If DEF is

passed instead of a value then the current value is used.

 Source List - With the LBSFxx sensors this is normally omitted in that it has no affect. However, Source list is

(if included) must be (@1).

Example:

The following demonstrates how to make a measurement using the most common and the long form or MEAS?

0000001 → *RST

0000002 → MEAS?

0000003 ← -3.03355249E+01

0000004 → MEASURE1:SCALAR:POWER:AC? -30, 4,(@1)

0000005 ← -3.03415129E+01

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 27

LBSFXX Series True-RMS Power Sensor Programming Guide v1

READ[1]? or READ[[1] [:SCALar][:POWer:AC]?

Syntax:

Most common form:

READ?

Long form:

READ1:SCALAR:POWER:AC? <expected value>, <resolution>,(@1)

Additional Forms

READ? DEF, <resolution>

Description:

This query aborts any measurement in process. This is followed by an INIT command (internally) and potentially

continues with the measurement concluding by placing the measurement result in the output buffer. Unlike

MEAS? this command does not use the optional configuration information to configure the measurement.

Instead, the configuration parameters passed via READ? command are used for comparison. And if there is a

mismatch between the parameters passed in the READ? command and the current configuration an error is

generated. No measurement is placed in the output buffer. If the parameters do match the process continues

with the measurement. And the subsequent result is placed in the output buffer.

Example:

In the sequence below, several forms of READ? are exercised. Included is the deliberate generation of a

configuration mismatch error. READ? is often used with the CONF command. In this case you must be sure to

mitigate unwanted side effects of using CONF,

Commands Comments

0000001 → *RST

0000002 → READ? common form of READ?

0000003 ← -2.04422867E+01

0000004 → READ:SCALAR:POWER:AC? long form of READ? without parameters

0000005 ← -2.04437082E+01

0000006 → READ:SCALAR:POWER:AC? DEF, DEF, (@1) long form of READ? with default parameters

0000007 ← -2.04398956E+01

0000008 → CONF? get current configuration

0000009 ← "POW:AC +2.000000E+01,+3,(@1)"

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 28

LBSFXX Series True-RMS Power Sensor Programming Guide v1

0000010 → READ:SCALAR:POWER:AC? DEF, 4, (@1) resolution mismatch!

0000011 ← timed out the mismatch should generate an error or two,

and it did!

0000012 → SYST:ERR? get…

0000013 ← -221,"Settings conflict" …the first error

0000014 → SYST:ERR? get…

0000015 ← -420,"Query UNTERMINATED" …the second error

0000016 → READ:SCALAR:POWER:AC? DEF, 3, (@1) resolution matches this time…

0000017 ← -2.04420077E+01 …no error, returns a measurement

0000018 → READ:SCALAR:POWER:AC? DEF, 3 same command without source list

0000019 ← -2.04415148E+01

Common Error Messages:

Again, it is important to refer to the CONF command to understand the side effects associated with CONF. Some

settings can generate errors when using READ? and prevent READ? from delivering a result.

 INIT:CONT must be disabled or OFF before trying to make a measurement with READ? If a READ? command

is issued with INIT:CON enabled or ON the following errors are generated:

o 213 “Init ignored”

o 420 “Query UNTERMINATED”

 If the trigger source is either BUS or HOLD the following errors are generated:

o 214,"Trigger deadlock"

o 420,"Query UNTERMINATED"

 Finally, if parameters are passed as part of a READ? command they must either match the current settings

or be set to default (“DEF”). Otherwise the following errors will be generated:

o 221,"Settings conflict"

o 420,"Query UNTERMINATED"

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 29

LBSFXX Series True-RMS Power Sensor Programming Guide v1

Calculate Commands

In power sensors supporting SPCI, the calculate commands use measurement data in post-processing. The

primary function is setting limits and reporting how a sequence of measurements performed relative to these

limits.

To this purpose the LBSFxx power sensors allow the user to set upper and lower power limits. These limits are

then used for “failure” counting. A failure is any measured outside the defined limits. The type of counting is

dependent on the settings. It can keep track of failures in one of two ways:

1. It can report the accumulated number of failures since the failure count was reset

2. It can report that a failure did or did not occur with the most recent measurement

3. Combines the first two options

In the second case the count is continuously reset. This limits the count to 0 and 1 indicating that the most

recent measurement has failed. Otherwise, the count is generally allowed to accumulate until it is cleared. The

upper limit of counting is 65535. An error is issued anytime the count exceeds this value.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 30

LBSFXX Series True-RMS Power Sensor Programming Guide v1

CALC:FEED[?] or CALCulate[1]:FEED[?]

CALC:MATH[?]or CALCulate[1]:MATH:EXPRession[?]

CALC:MATH:CAT? or CALCulate:MATH:EXPRession:CATalog?

Syntax:

Most common forms:

CALC:FEED?

CALC:FEED "POW:AVER"

CALC:MATH?

CALC:MATH "(SENS1)"

CALC:MATH:CAT?

Long forms:

CALCulate1:FEED?

CALCulate1:FEED "POW:AVER"

CALCulate1:MATH:EXPRession?

CALCulate1:MATH:EXPRession "(SENS1)"

CALCulate:MATH:EXPRession:CATalog?

Description:

These commands set or return the current function (“POW:AVER”) or the math expression catalog. These values

are singular and fixed. In other words there is one, and only one, permissible value for each of these commands.

These commands have greater value in instruments possessing multiple detectors and sensors. Since this sensor

is dedicated to single channel average power measurements, these commands are of limited use beyond

command and driver compatibility.

Examples:

Commands Comments

0000124 → CALC1:FEED?

0000125 ← "POW:AVER"

0000126 → CALC1:FEED "POW:AVER"

0000127 → CALC:MATH:EXPR?

0000128 ← "(SENS1)"

0000129 → CALC:MATH "(SENS1)"

0000130 → CALC:MATH:EXPR:CAT?

0000131 ← "(SENS1)"

what is the measurement mode…

…measuring average power

set the feed to the only permissible value

what is the current math expression…

…we have one channel

set the math expression to the only allowable value…

get a list of math expressions…

…there is only one

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 31

LBSFXX Series True-RMS Power Sensor Programming Guide v1

CALC:LIM:CLEar:AUTO[?] or CALCulate[1]:LIMit:CLEar:AUTO{?}

Syntax:

Most common forms:

CALC:LIM:CLE:AUTO?

CALC:LIM:CLE:AUTO <0|1|ONCE>

Long forms:

CALCulate1:LIMit:CLEar:AUTO?

CALCulate1:LIMit:CLEar:AUTO <0|1|ONCE>

Description:

The parameter provided with this command controls how and under what conditions the failure count is

cleared. Permissible values are 0, 1 or ONCE. Each meaning is below:

 If the value is 0 or OFF the failure count is NOT automatically cleared. Rather the count is cleared ONLY

when the sensor receives a CALC:LIM:CLE command.

 If the value is 1 or ON the failure count is cleared immediately before each measurement. This setting

indicates pass/fail of the most recent measurement. These command cause the count to be cleared if:

o INIT or INIT:IMM command is issued

o A measurement commences with INIT:CONT set to 1 or ON

o A MEAS? command is executed

o A READ? command is executed

 If the feature is set to ONCE, the count is cleared starting upon starting the next measurement. Thereafter

the sensor behaves as if this feature was set to 0 (never automatically cleared)

 The count is also cleared by CALC:LIM:CLE:AUTO 1 (or ON)

Example

This sequence demonstrates the use of most of the CALC commands. This is done because of inadequacy of

demonstrating the commands in isolation of each other.

The sequence starts by setting limits and enabling limit checking. Initially source power is set to a level between

the upper and lower limits. Measurements then proceed. Under these circumstances no failure should occur.

The sequence continues by setting the source power below the lower limit. Measurements recommence and

failures occur. Source settings remain unchanged thereafter. However, settings that manage failure tracking are

varied and the resulting effects are demonstrated.

Commands Comments

0000714 → *RST Set sensor to a known state

0000715 → AVER:COUN:AUTO 0 Disable auto averaging (convenience)

0000716 → AVER:COUN 10 Set average count to 10 (faster)

0000717 → CALC:LIM:LOW -10 Set lower…

0000718 → CALC:LIM:UPP 10 …and upper limits

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 32

LBSFXX Series True-RMS Power Sensor Programming Guide v1

0000719 → CALC:LIM:STAT 1 Turn on limit checking

0000720 → CALC:LIM:FAIL? Any failures yet?

0000721 ← 0 Nope

0000725 → CALC:LIM:FCO? Failure count?

0000726 ← +0 None

Set source power to 0dBm Should not cause failures

0000727 → READ? Start making some measurements

0000728 ← -3.83508613E-01

0000729 → READ?

0000730 ← -3.84266024E-01

0000731 → READ?

0000732 ← -3.84728069E-01

0000733 → CALC:LIM:FAIL? Any failures?

0000734 ← 0 Nope!

0000735 → CALC:LIM:FCO? And the count…

0000736 ← +0 …is zero

Set source power to -20dBm This change in power level should cause failures..

0000737 → READ? Start making more measurements

0000738 ← -2.04607346E+01

0000739 → READ?

0000740 ← -2.04601199E+01

0000741 → READ?

0000742 ← -2.04593472E+01

0000743 → READ?

0000744 ← -2.04591619E+01

0000745 → CALC:LIM:FAIL? Any failures?

0000746 ← 1 Yes

0000747 → CALC:LIM:FCO? How many…(default value for CALC:LIM:CLE = 1)

0000748 ← +1 … shows a count of one. Resets on start of measurement

0000749 → CALC:LIM:CLE …clear the failures

0000750 → CALC:LIM:CLE:AUTO 0 …disable failure auto clear

0000751 → CALC:LIM:FAIL? Any failures yet

0000752 ← 0 No. There shouldn’t be since ewe just cleared failures

0000753 → CALC:LIM:FCO? And the count is…

0000754 ← +0 …0, this is also correct

0000755 → READ? Make some measurements…source is still at -20dBm

0000756 ← -2.04572978E+01

0000757 → READ?

0000758 ← -2.04567314E+01

0000759 → READ?

0000760 ← -2.04565999E+01

0000761 → CALC:LIM:FAIL? Any failures?

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 33

LBSFXX Series True-RMS Power Sensor Programming Guide v1

0000762 ← 1 Yes…and there should be

0000763 → CALC:LIM:FCO? How many?

0000764 ← +3 correct… count is not clearing for each measurement

0000765 → CALC:LIM:CLE:AUTO? and auto failure clear is…

0000766 ← 0 …still disabled

0000767 → CALC:LIM:CLE:AUTO ONCE <<<<<---- Setup to clear once then count

0000771 → READ? Start making measurements…

0000772 ← -2.04522242E+01

0000773 → READ?

0000774 ← -2.04518298E+01

0000775 → CALC:LIM:FAIL? Any failures…

0000776 ← 1 Yes

0000777 → CALC:LIM:FCO? Count is..

0000778 ← +2 2

0000779 → CALC:LIM:CLE:AUTO ONCE <<<<<---- Set it to clear once and then count again

0000780 → READ? Make measurements

0000781 ← -2.04521913E+01

0000782 → READ?

0000783 ← -2.04511674E+01

0000784 → READ?

0000785 ← -2.04518987E+01

0000786 → READ?

0000787 ← -2.04508453E+01

0000788 → CALC:LIM:FAIL? Any failures?

0000789 ← 1 Yes

0000790 → CALC:LIM:FCO? And we counted only those failures that occurred…

0000791 ← +4 … after clearing once

0000792 → READ? So keep making measurements

0000793 ← -2.04508859E+01

0000794 → READ?

0000795 ← -2.04509669E+01

0000796 → READ?

0000797 ← -2.04509931E+01

0000798 → CALC:LIM:FAIL? Any failures

0000799 ← 1 Yes

0000800 → CALC:LIM:FCO? How many?

0000801 ← +7 Continued counting since clearing once on line 779

0000802 → CALC:LIM:CLE:AUTO ONCE Auto clear to once a final time

0000803 → READ? Make some measurements

0000804 ← -2.04511196E+01

0000805 → CALC:LIM:FAIL? Any failures?

0000806 ← 1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 34

LBSFXX Series True-RMS Power Sensor Programming Guide v1

0000807 → CALC:LIM:FCO? Yes but…

0000808 ← +1 …just one so it must have cleared as it should

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 35

LBSFXX Series True-RMS Power Sensor Programming Guide v1

CALC:LIM:CLE[?] or CALCulate[1]:LIMit:CLEar[:IMMediate][?]

Syntax:

Most common form:

CALC:LIM:CLE

Long form:

CALCULATE1:LIMIT:CLEAR:IMMEDIATE

Description:

Clears the failure indicator (CALC:LIM:FAIL?) and failure counter (CALC:LIM:FCO).

Example:

See an extensive example of the CALC commands in CALC:LIM:CLEar:AUTO[?]

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 36

LBSFXX Series True-RMS Power Sensor Programming Guide v1

CALC:LIM:FAIL? or CALCulate[1]:LIMit:FAIL?

Syntax:

Most common form:

CALC:LIM:FAIL?

Long form:

CALCULATE:LIMIT:FAIL?

Description:

This command ANDs the bits of failure count. As a result, this query returns:

 0 if no failures have occurred

 1 if any failures have occurred.

This command is useful in determining if any failure has occurred. For this command to be function,

CALC:LIM:STAT must be enabled.

Example:

See an extensive example of the CALC commands in CALC:LIM:CLEar:AUTO[?]

On RESET

This value is set to zero upon reset.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 37

LBSFXX Series True-RMS Power Sensor Programming Guide v1

CALC:LIM:FCO? or CALCulate[1]:LIMit:FCOunt?

Syntax:

Most common form:

CALC:LIM:FCO?

Long form:

CALCULATE1:LIMIT:FCOUNT?

Description:

This query returns the number of failures counted so far in concert with other CALC settings. The count if

dependent upon CALC:LIM:STAT begin enabled (equal to 1) and the value of CALC:LIM:CLE:AUTO.

Example:

See an extensive example of the CALC commands in CALC:LIM:CLEar:AUTO[?]

Reset:

On reset or power up the counter is set to zero.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 38

LBSFXX Series True-RMS Power Sensor Programming Guide v1

CALC:LIM:LOW[?] or :CALCulate[1]:LIMit:LOWer[:DATA][?]

Syntax:

Most common form:

CALC:LIM:LOW <value>

CALC:LIM:LOW?

Long form:

CALCULTATE1:LIMIT:LOWER:DATA <value>

CALCULTATE1:LIMIT:LOWER:DATA?

Description:

The command sets the lower test limit to which the measured value is compared. If the measured value is lower

than this limit, the failure count may be incremented. The values are:

 Minimum value is -150dBm

 Maximum value is +230dBm

 Reset or Default value is -90dBm

Example:

See an extensive example of the CALC commands in CALC:LIM:CLEar:AUTO[?]

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 39

LBSFXX Series True-RMS Power Sensor Programming Guide v1

CALC:LIM:STAT[?] or CALCulate[1]:LIMit:STATe[?]

Syntax:

Most common form:

CALC:LIM:STAT?

CALC:LIM:STATE < 0|1 >

Long form:

CALCULATE1:LIMIT:STATE?

CALCULATE1:LIMIT:STATE < 0|1 >

Description:

This setting enables or disables failure counting.

Example:

See an extensive example of the CALC commands in CALC:LIM:CLEar:AUTO[?]

Reset:

Upon reset or power on this is disabled.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 40

LBSFXX Series True-RMS Power Sensor Programming Guide v1

CALC:LIM:UPP[?] or CALCulate[1]:LIMit:UPPer:DATA[?]

Syntax:

Most common form:

CALC:LIM:UPP?

CALC:LIM:UPP <value>

Long form:

CALCULATE1:LIMIT:UPPER:DATA?

CALCULATE1:LIMIT:UPPER:DATA <value>

Description:

The command sets the upper test limit to which the measured value is compared. If the measured value is above

this limit, the failure count may be incremented. The values are:

 Minimum value is -150dBm

 Maximum value is +230dBm

 Reset or Default value is +90dBm

Example:

See an extensive example of the CALC commands in CALC:LIM:CLEar:AUTO[?]

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 41

LBSFXX Series True-RMS Power Sensor Programming Guide v1

Calibration

These commands are required by competitive sensors in order to properly zero a power sensor. However,

zeroing is not required with the LBSFxx line of power sensors. These commands are included for compatibility

purposes only and have no effect on the measurement. However, in some cases a value is set. In these cases the

values are tracked.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 42

LBSFXX Series True-RMS Power Sensor Programming Guide v1

CAL:ZERO:AUTO or CALibration1:ZERO:AUTO

Syntax:

Most common forms:

CAL:ZERO:AUTO?

CAL:ZERO:AUTO < 0|1 >

Long forms:

CALIBRATION1:ZERO:AUTO?

CALIBRATION1:ZERO:AUTO < 0|1 >

Description:

This command is non-functioning. It is included for compatibility purposes only. The value is tracked and

returned but otherwise has no affect.

Examples:

0000013 → CAL:ZERO:AUTO?

0000014 ← 1

0000015 → CAL:ZERO:AUTO 0

0000016 → CAL:ZERO:AUTO?

0000017 ← 0

0000018 → CAL:ZERO:AUTO 1

0000019 → CAL:ZERO:AUTO?

0000020 ← 1

0000021 → *RST

0000022 → CAL:ZERO:AUTO?

0000023 ← 1

0000024 → CAL:ZERO:AUTO ONCE

0000025 → CAL:ZERO:AUTO?

0000026 ← 0

0000027 → CAL:ZERO:AUTO 1

0000028 → CAL:ZERO:AUTO?

0000029 ← 1

0000030 → CAL:ZERO:AUTO ONCE

0000031 → CAL:ZERO:AUTO?

0000032 ← 0

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 43

LBSFXX Series True-RMS Power Sensor Programming Guide v1

CAL:ZERO:TYPE or CALibration1:ZERO:TYPE

Syntax:

Most common forms:

CAL:ZERO:TYPE?

CAL:ZERO:TYPE < EXT|INT >

Long forms:

CALIBRATION1:ZERO:TYPE?

CALIBRATION1:ZERO:TYPE < EXTERNAL|INTERNAL >

Descriptions:

This command is non-functioning. It is included for compatibility purposes only. The value is tracked and

returned but otherwise has no affect. The default value is INT or INTERNAL.

Example:

0000035 → CAL:ZERO:TYPE?

0000036 ← INT

0000037 → CAL:ZERO:TYPE EXT

0000038 → CAL:ZERO:TYPE?

0000039 ← EXT

0000040 → CAL:ZERO:TYPE INT

0000041 → CAL:ZERO:TYPE?

0000042 ← INT

0000043 → *RST

0000044 → CAL:ZERO:TYPE?

0000045 ← INT

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 44

LBSFXX Series True-RMS Power Sensor Programming Guide v1

CAL or CALibration1[:ALL]

Syntax:

Most common forms:

CAL?

CAL

Long forms:

CALIBRATION1:ALL?

CALIBRATION1:ALL

Descriptions:

This command is non-functioning. It is included for compatibility purposes only. When queried it always returns

a zero.

Examples:

0000046 → CAL

0000047 → CAL?

0000048 ← 0

0000049 → CAL:ALL?

0000050 ← 0

0000051 → CAL:ALL

0000052 → CAL:ALL?

0000053 ← 0

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 45

LBSFXX Series True-RMS Power Sensor Programming Guide v1

Format

The format commands control two items. The format (binary or text) and the byte order in the event that the

format of the data is set to binary.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 46

LBSFXX Series True-RMS Power Sensor Programming Guide v1

FORMat[:READings]:BORDer

Syntax:

Most common forms:

FORM:BORD < NORM|SWAP >

FORM:BORD?

Long forms:

FORMAT:READINGS:BORDER < NORMAL|SWAPPED >

FORMAT:READINGS:BORDER?

Description:

This setting determines the byte ordering of data transferred in binary format.

Example:

The following example demonstrates exercising the command to change the byte ordering.

0000054 → FORM:BORD?

0000055 ← NORM

0000056 → FORM:BORD SWAP

0000057 → FORM:BORD?

0000058 ← SWAP

0000059 → FORM:BORD NORM

0000060 → FORM:BORD?

0000061 ← NORM

0000062 → FORMAT:READINGS:BORDER?

0000063 ← NORM

0000064 → FORMAT:READINGS:BORDER SWAPPED

0000065 → FORMAT:READINGS:BORDER?

0000066 ← SWAP

On Reset:

On reset or power up byte ordering (BORD) is set to NORMAL

Other Notes:

This has no effect if FORM? is set to ASC or ASCII

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 47

LBSFXX Series True-RMS Power Sensor Programming Guide v1

FORMat[:READings][:DATA]

Syntax:

Most common forms:

FORM < ASC|REAL >

FORM?

Long forms:

FORMAT:READINGS:DATA < ASCII|REAL >

FORMAT:READINGS:DATA?

Description:

This command determines whether the transfer of numeric data is either ASCII or REAL.

 If set to ASCII the text format is a number an exponent such as 1.000E+3 (representing 1000) called NR3 in

SCPI. This is sometimes referred to as scientific notation.

 If set to REAL then the data is in a binary form consistent with IEEE 754. This is sometimes referred to as a 64

bit real or a double in some programming languages. Each value is terminated by a line feed (ASCII value of

10).

Examples:

This sequence demonstrates setting the format and retrieving the format.

0000088 → FORMAT:READINGS:DATA?

0000089 ← ASC

0000090 → FORMAT:READINGS:DATA REAL

0000091 → FORMAT:READINGS:DATA?

0000092 ← REAL

0000093 → FORM?

0000094 ← REAL

0000095 → FORM ASCII

0000096 → FORM?

0000097 ← ASC

On Reset

The format is set so ASCII on power on and reset.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 48

LBSFXX Series True-RMS Power Sensor Programming Guide v1

Initiate

In general, the purpose of the initiate commands is to manage the sensors response to triggering. There are

three possible states:

 Idle state: In this state the sensor will ignore all incoming triggers. The sensor will remain in an idle state

until the measurement process is initiated.

 Active state: Ready to respond to the active trigger. The most common trigger sources are immediate

triggers issued by the sensor (MEAS? or READ? commands) or external triggers.

If the sensor is active, when a trigger arrives the sensor will make the measurement and place resultant

measurement in the outgoing buffer. The sensor then returns to the idle state. It remains in the idle state until:

 The user issues an explicit INIT command

 The user issues an implicit INIT command by sending a MEAS? or READ? command

 The sensor provides a INITIATE command upon completion of a measurement (INIT:CONT = 1)

An important idea to keep in mind is that the initiate commands are considered to be “overlapped”.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 49

LBSFXX Series True-RMS Power Sensor Programming Guide v1

INITiate:CONTinuous

INITiate1:CONTinuous

INITiate:CONTinuous:ALL

INITiate1:CONTinuous:ALL

INITiate:CONTinuous:SEQuence

INITiate1:CONTinuous:SEQuence

INITiate:CONTinuous:SEQuence1

INITiate1:CONTinuous:SEQuence1

Syntax:

Most common forms:
INIT:CONT < 0|1 >

INIT:CONT?

Long forms:
INITIATE:CONTINUOUS < 0|1 >

INITIATE1:CONTINUOUS:SEQUENCE1 < 0|1 >

INITIATE1:CONTINUOUS:ALL < 0|1 >

INITIATE:CONTINUOUS?

INITIATE1:CONTINUOUS:SEQUENCE1?

INITIATE1:CONTINUOUS:ALL?

Description:

For this product, all of these commands are identical. These commands cause the sensor to either wait for an

explicate command to initiate a measurement cycle or generate the command internally. When enabled

(INIT:CONT = 1) the sensor generates a continuous stream of INITIATE commands sometimes referred to as free

run. This property can be queried. If INIT:CONT is set to:

1. 0 causes the sensor to remain in an idle state (doing nothing). It waits for the INIT command. When it

receives and INIT command it exits the idle state and starts waits for a trigger.

2. 1 causes the sensor issues an INIT command internally upon completion of a measurement. This causes

the sensor to continuously restart the measurement process. If the trigger source is set to immediate,

the sensor continuously makes measurements.

Examples:

In the following examples INIT:CONT is set (to 1 or 0) and queried using of the various forms of the command.

0000041 → INIT:CONT?

0000042 ← 0

0000043 → INIT:CONT 1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 50

LBSFXX Series True-RMS Power Sensor Programming Guide v1

0000044 → INIT:CONT?

0000045 ← 1

0000046 → INITIATE:CONTINUOUS?

0000047 ← 1

0000048 → INITIATE1:CONTINUOUS?

0000049 ← 1

0000050 → INITIATE1:CONTINUOUS 0

0000051 → INITIATE1:CONTINUOUS?

0000052 ← 0

0000053 → INITIATE1:CONTINUOUS 1

0000054 → INITIATE1:CONTINUOUS?

0000055 ← 1

On Power Up

INIT:CONT is set to 1 upon power up.

On Reset

INIT:CONT is set to 0 on reset (*RST)

Common Error Messages:

If INIT:CONT = 1, FETCH? must be used to make a measurement. In the first part of this example below the user

attempts to make a measurement using the READ? (with INIT:CONT = 1). The READ? fails and error messages are

generated. Folowing this, the FETCH? command is used to make a measurement and works quite nicely. Finally,

and INIT is issued (INIT:CONT stil is set to 1). This causes an “INIT ignored” error to be generated by the sensor.

0000092 → INIT:CONT 1

0000093 → READ?

0000094 ← timed out

0000095 → SYST:ERR?

0000096 ← -213,"Init ignored"

0000097 → SYST:ERR?

0000098 ← -420,"Query UNTERMINATED"

0000099 → FETCH?

0000100 ← -1.03488405E+01

0000109 → INIT

0000110 → SYST:ERR?

0000111 ← -213,"Init ignored"

Other Notes:

Setting INIT:CONT = 1 and TRIG:SOUR = IMMEDITE is the same as free run.

If INIT:CONT = 1 then the INIT command should not be issued. To make a measurement with INIT:CONT = 1 you

need only issue a FETCH? command. If INIT:CONT = 0 you must issue an INIT command to start the

measurement process. Having issued an INIT command, any of the measurement commands (MEAS?, READ? or

FETCH?) can be used. Finally, issuing a MEAS? command causes INIT:CONT to set to 0.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 51

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 52

LBSFXX Series True-RMS Power Sensor Programming Guide v1

INITiate[:IMMediate]/nquery/

INITiate1[:IMMediate]/nquery/

INITiate[:IMMediate]:ALL/nquery/

INITiate1[:IMMediate]:ALL/nquery/

INITiate[:IMMediate]:SEQuence/nquery/

INITiate1[:IMMediate]:SEQuence/nquery/

INITiate[:IMMediate]:SEQuence1/nquery/

INITiate1[:IMMediate]:SEQuence1/nquery/

Syntax:

Most common forms:
INIT

Long forms:
INITIATE1:IMMEDIATE:SEQUENCE1

Description:

This command is issued when INIT:CONT is 0. The command causes the sensor to exit the idle state and begin

waiting for a trigger. If the trigger source is set to immediate a measurement commences upon receipt of this

command.

Examples:

In the example below we see the relationship between INIT:CONT and INIT demonstrated. It also demonstrates

the incorrect way to use INIT. INIT assumes that INIT:CONT = 0. If that is not the case then an “Init ignored” error

is generated.

0000114 → INIT:CONT?

0000115 ← 1

0000116 → INIT

0000117 → SYST:ERR?

0000118 ← -213,"Init ignored"

0000119 → SYST:ERR?

0000120 ← +0,"No error"

0000121 → INIT:CONT 0

0000122 → INIT

0000123 → FETCH?

0000124 ← -1.03615134E+01

0000125 → SYST:ERR?

0000126 ← +0,"No error"

0000127 → INIT

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 53

LBSFXX Series True-RMS Power Sensor Programming Guide v1

0000128 → READ?

0000129 ← -1.03532959E+01

Common Error Messages:

As shown in the example, INIT should not be issued when INIT:CONT = 1. In this case the sensor is generating the

INIT commands internally. If an INIT is issued when INIT:CONT = 1 then an “Init ignored” error message is

generated.

Other Notes:

The INIT command can be used with any of the measurement commands (MEAS? READ? or FETCH?). To use this

command INIT:CONT must be set to 0 or OFF. If INIT:CONT = 1 and an INIT is issued an 213,"Init

ignored" error is generated.

This command is the same as TRIG:IMM or TRIGGER:IMMEDIATE

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 54

LBSFXX Series True-RMS Power Sensor Programming Guide v1

Input

There is a single input command. This command controls the input impedance of the trigger in port.

INPut:TRIGger:IMPedance

Syntax:

Most common forms:
INP:TRIG:IMP < LOW:HIGH >

INP:TRIG:IMP?

Long forms:
INPUT:TRIGGER:IMPEDANCE < LOW|HIGH >

INPUT:TRIGGER:IMPEDANCE?

Description:

This command controls the impedance seen at the trigger in port. It has two values and they are LOW and HIGH.
A setting of LOW causes the trigger input impedance to be 50Ω. And a setting of HIGH causes the trigger input
impedance to be 100kΩ.

Examples:

In the sequence below we are setting the input impedance low and high.

0000025 → INP:TRIG:IMP?

0000026 ← HIGH

0000027 → INP:TRIG:IMP LOW

0000028 → INP:TRIG:IMP?

0000029 ← LOW

0000030 → INP:TRIG:IMP HIGH

On Reset

After a power up or reset (*RST) the input impedance is set to HIGH by default.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 55

LBSFXX Series True-RMS Power Sensor Programming Guide v1

Memory

The memory subsystem is used to store, edit and manage:

3. Frequency dependent offset tables (sometimes referred to as correction tables)

4. Save/Recall registers

The LBSFxx sensors have 10 save/recall registers and 10 frequency dependent offset tables. Each table may

contain up to 80 points of correction. Each point in the table consists of a frequency and a power level value.

The frequency dependent offset tables and registers (or states) are held in non-volatile memory. So, a loss of

power will not cause the sensor to loose save/recall states or correction data settings.

NOTE: The MEM commands use numbers ranging from 0 to 9 for both the tables and registers. The *SAV and

*RCL commands use register numbers ranging from 1 to 10. In other words, MEM commands use a zero based

numbering system and the IEEE 488.2 *SAV and *RCL commands use a one based numbering system.

Most of the MEM commands do not use register numbers, instead they use register names. The exception is the

MEM:STAT:DEF or MEMORY:STATE:DEFINE command. This command allows the user to change the name of a

SAVE/RECALL register. These names are reported in the catalog functions. For this command you must use a

zero based numbering scheme. For example:

5. Save the current state using the command *SAV 5

6. Recall this same state using *RCL 5

7. However, to rename this same register you must issue the following command MEM:STAT:DEF

“REG_5_NAME”, 4 (note the 4 in the command instead of 5)

While this may seem awkward it is necessary for command and software driver compatibility.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 56

LBSFXX Series True-RMS Power Sensor Programming Guide v1

MEMory:CATalog:STATe?/qonly/

Syntax:

Most common forms:
MEM:CAT:STAT?

Long forms:
MEMORY:CATALOG:STATE?

Description:

This query returns a catalog of registers. The format of the return string is:

<numeric>,<numeric>,”<string0>,<type>,<size>”,”<string1>,<type>,<size>”, …

 ”<string9>,<type>,<size>”,

The first numeric value is the number of bytes used. The second is number of bytes available. This data is

followed by ten sets of save/recall register information. Each register has three pieces of information. The first is

the name of the state, the second is the type of memory (always be STAT in this case) third is the size of

allocated memory used by the register.

This data is held in non-volatile memory so that resets or power up/down do not affect the save recall registers.

Instead, these registers must be cleared explicitly using SCPI commands such as MEM:CLE < name > where name

is the name of either a register or table.

Example:

In this case we set the command requests a catalog of save/recall registers.

0000053 → MEM:CAT:STAT?

0000054 ←

0,2880,"State0,STAT,0","State1,STAT,0","State2,STAT,0","State3,STAT,0","State4,STAT,0","State

5,STAT,0","State6,STAT,0","State7,STAT,0","State8,STAT,0","State9,STAT,0"

Other Notes:

The numbering scheme between *SAV and *RCL are at variance with the memory subsystem’s numbering

system. The memory subsystem uses a zero based (0…9) sequence as shown in the return value above and the

*SAV and *RCL use a 1 based (1…10) sequence.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 57

LBSFXX Series True-RMS Power Sensor Programming Guide v1

MEMory:CATalog:TABLe?/qonly/

Syntax:

Command form:
MEM:CAT:TABL?

Long form:
MEMORY:CATALOG:TABLE?

Description:

This query only command returns a catalog of the saved frequency correction tables. The format of the return

string is:

<numeric>,<numeric>,”<string0>,<type>,<size>”,”<string1>,<type>,<size>”, …

 ”<string9>,<type>,<size>”,

The first numeric value is the number of bytes used. The second is the number of bytes available. Each

subsequent string contains three pieces of information. The first is the name of the table, the second is the type

of memory (always be TABL in this case) third is the size of allocated memory used by the table.

This data is held in non-volatile memory so that resets or power up/down do not affect the tables. Instead, these

tables must be cleared explicitly using SCPI commands such as MEM:CLE < name > where name is the name of

either a register or table.

Example:

0000005 → MEM:CAT:TABL?

0000006 ←

0,4800,"CUSTOM_A,TABL,0","CUSTOM_B,TABL,0","CUSTOM_C,TABL,0","CUSTOM_D,TABL,0","CUSTOM_E,TABL

,0","CUSTOM_F,TABL,0","CUSTOM_G,TABL,0","CUSTOM_H,TABL,0","CUSTOM_I,TABL,0","CUSTOM_J,TABL,0"

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 58

LBSFXX Series True-RMS Power Sensor Programming Guide v1

MEMory:CATalog[:ALL]?/qonly/

Syntax:

Most common form:

MEM:CAT:ALL?

Long forms:
MEMORY:CATALOG:ALL?

Description:

This query only command returns a catalog of the saved registers and frequency correction tables. The format of

the return string is:

<numeric>,<numeric>,”<string0>,<type>,<size>”,”<string1>,<type>,<size>”, …

 ”<string9>,<type>,<size>”,

The first numeric value is the number of bytes used. The second is total number of bytes available. This is

followed by twenty sets of definitions. In each case the string contains the name of the register or table, the

type shows the type of memory (should be STAT or TABL) and the number of bytes currently used by each state

or table.

This data is held in non-volatile memory so that neither resets nor power up/down affects the state or tables.

Instead, these states and tables must be cleared explicitly by a command such as MEM:CLE < name > where

name is the name of either a register or table

Examples:

0000016 → MEM:CAT:ALL?

0000017 ←

288,7680,"CUSTOM_A,TABL,0","CUSTOM_B,TABL,0","CUSTOM_C,TABL,0","CUSTOM_D,TABL,0","CUSTOM_E,TA

BL,0","CUSTOM_F,TABL,0","CUSTOM_G,TABL,0","CUSTOM_H,TABL,0","CUSTOM_I,TABL,0","CUSTOM_J,TABL,

0","State0,STAT,288","State1,STAT,0","State2,STAT,0","State3,STAT,0","State4,STAT,0","State5,

STAT,0","State6,STAT,0","State7,STAT,0","State8,STAT,0","State9,STAT,0"

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 59

LBSFXX Series True-RMS Power Sensor Programming Guide v1

MEMory:CLEar:TABLe/nquery/

Syntax:

Most common form:
MEM:CLE:TABL

Long form:
MEMORY:CLEAR:TABLE

Description:

This command clears the currently selected table. If a table isn’t selected a 221 “Settings conflict” error is

generated.

Examples:

In this sequence we first catalog the tables. Note that CUSTOM_B contains information. We ask the sensor

which table is selected. Initially no table is selected (hence a null string is returned). Then we issue the command

to clear the currently selected table. This of course generates an error. Then we select CUSTOM_B and issue the

command to clear the selected table. This works correctly as shown the size of CUSTOM_B is reduced from 30 to

0.

0000003 → MEM:CAT:TABL?

0000004 ←

30,4800,"JON,TABL,0","CUSTOM_B,TABL,30","CUSTOM_C,TABL,0","CUSTOM_D,TABL,0","CUSTOM_E,TABL,0"

,"CUSTOM_F,TABL,0","CUSTOM_G,TABL,0","CUSTOM_H,TABL,0","CUSTOM_I,TABL,0","CUSTOM_J,TABL,0"

0000005 → MEM:TABL:SEL?

0000006 ←

0000007 → MEM:CLE:TABL

0000008 → SYST:ERR?

0000009 ← -221,"Settings conflict"

0000010 → SYST:ERR?

0000011 ← +0,"No error"

0000012 → MEM:TABL:SEL "CUSTOM_B"

0000013 → MEM:CLE:TABL

0000014 → SYST:ERR?

0000015 ← +0,"No error"

0000016 → MEM:CAT:TABL?

0000017 ←

0,4800,"JON,TABL,0","CUSTOM_B,TABL,0","CUSTOM_C,TABL,0","CUSTOM_D,TABL,0","CUSTOM_E,TABL,0","

CUSTOM_F,TABL,0","CUSTOM_G,TABL,0","CUSTOM_H,TABL,0","CUSTOM_I,TABL,0","CUSTOM_J,TABL,0"

Common Error Messages:

If no table is selected error 221 “Settings conflict” is generated

Other Notes:

Cleared data is not recoverable.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 60

LBSFXX Series True-RMS Power Sensor Programming Guide v1

MEMory:CLEar[:NAME]/nquery/

Syntax:

Most common forms:
MEM:CLE <name>

Long forms:
MEMORY:CLEAR:NAME <name>

Description:

This command clears the data associated with a named table or state. If a state is named then the state is

cleared. If the table is named, the table is cleared.

Examples:

In this example a table is cleared then a state is cleared. The state and the table are cleared using the default

names as shown in the MEM:CAT:ALL? command.

0000014 → MEM:CAT:ALL?

0000015 ←

0,7680,"CUSTOM_A,TABL,0","CUSTOM_B,TABL,0","CUSTOM_C,TABL,0","CUSTOM_D,TABL,0","CUSTOM_E,TABL

,0","CUSTOM_F,TABL,0","CUSTOM_G,TABL,0","CUSTOM_H,TABL,0","CUSTOM_I,TABL,0","CUSTOM_J,TABL,0"

,"State0,STAT,0","State1,STAT,0","State2,STAT,0","State3,STAT,0","State4,STAT,0","State5,STAT

,0","State6,STAT,0","State7,STAT,0","State8,STAT,0","State9,STAT,0"

0000016 → MEM:CLE "CUSTOM_B"

0000017 → MEM:CLE "State0"

Other Notes:

Once cleared, a table or state is not recoverable.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 61

LBSFXX Series True-RMS Power Sensor Programming Guide v1

MEMory:FREE:STATe?/qonly/

Syntax:

Most common forms:
MEM:FREE:STAT?

Long forms:
MEMORY:FREE:STATE?

Description:

This query returns the total memory available and the memory used by the save/recall registers. Each register

uses 288 bytes.

Examples:

0000210 → MEM:FREE:STAT?

0000211 ← 2880,288

0000212 → MEMORY:FREE:STATE?

0000213 ← 2880,288

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 62

LBSFXX Series True-RMS Power Sensor Programming Guide v1

MEMory:FREE:TABLe?/qonly/

Syntax:

Most common forms:
MEM:FREE:TABL?

Long forms:
MEMORY:FREE:TABLE?

Description:

This query returns the total memory available and memory used in bytes.

Examples:

The following sequence demonstrates this command.

0000205 → MEM:FREE:TABL?

0000206 ← 4800,0

0000207 → MEMORY:FREE:TABLE?

0000208 ← 4800,0

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 63

LBSFXX Series True-RMS Power Sensor Programming Guide v1

MEMory:FREE[:ALL]?/qonly/

Syntax:

Most common forms:

Long forms:

Description:

This query returns the total memory available for both the registers and tables and the total memory used by

both registers and tables.

Examples:

In this sequence the command is exercised and the return values are shown.

0000022 → MEM:FREE:ALL?

0000023 ← 7680,576

0000024 ← timed out

0000025 → MEM:FREE:ALL?

0000026 ← 7680,576

0000027 → MEM:FREE:ALL?

0000028 ← 7680,576

0000029 → MEM:FREE?

0000030 ← 7680,576

0000031 → MEMORY:FREE?

0000032 ← 7680,576

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 64

LBSFXX Series True-RMS Power Sensor Programming Guide v1

MEMory:NSTates?/qonly/

Syntax:

Most common forms:
MEM:NST?

Long forms:
MEMORY:NSTATES?

Description:

This command returns the number of states available. Since the number of states available is always 10, this

command always returns 10.

Examples:

0000077 → MEMORY:NSTATES?

0000078 ← +10

0000079 → MEM:NST?

0000080 ← +10

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 65

LBSFXX Series True-RMS Power Sensor Programming Guide v1

MEMory:STATe:CATalog?/qonly/

Syntax:

Most common forms:
MEM:STAT:CAT?

Long forms:
MEMORY:STATE:CATALOG?

Description:

This command lists the name of the save/recall states in order from the first state to the last state. Note that

*SAV and *RCL use one based register numbers (1..10) while most other commands use 0 based (0..9) register

numbers.

Examples:

0000083 → MEM:STAT:CAT?

0000084 ←

"State0","State1","State2","State3","State4","State5","State6","State7","State8","State9"

0000088 → MEMORY:STATE:CATALOG?

0000089 ←

"State0","State1","State2","State3","State4","State5","State6","State7","State8","State9"

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 66

LBSFXX Series True-RMS Power Sensor Programming Guide v1

MEMory:STATe:DEFine

Syntax:

Most common forms:
MEM:STAT:DEF <string>, <number>

MEM:STAT:DEF? <string>

Long forms:
MEMORY:STATE:DEFINE <string>, <number>

MEMORY:STATE:DEFINE? <string>

Description:

This command either sets the association between a name and a register or state number or recalls the numeric

half of the association given the name. In essence, this command names a numbered state. Or it recalls the

number of a named state. The state numbers for this and most other commands is a 0 based (0...9) numbering

system. However, the *SAV and *RCL commands that use a 1 based numbering system (1...10).

Examples:

In this example the state catalog is first listed. Then we make a change to the name of the fifth state (number 4)

and then catalog the states again.

0000200 → MEM:CAT:STAT?

0000201 ←

288,2880,"SETUP33,STAT,288","State1,STAT,0","STATE_1,STAT,0","State3,STAT,0","State4,STAT,0",

"State5,STAT,0","State6,STAT,0","State7,STAT,0","State8,STAT,0","State9,STAT,0"

0000202 → MEM:STAT:DEF "NEW_NAME_4", 4

0000203 → MEM:CAT:STAT?

0000204 ←

288,2880,"SETUP33,STAT,288","State1,STAT,0","STATE_1,STAT,0","State3,STAT,0","NEW_NAME_4,STAT

,0","State5,STAT,0","State6,STAT,0","State7,STAT,0","State8,STAT,0","State9,STAT,0""

Common Error Messages:

If you rename a state using a state number that is outside the values of 0 to 9 you will get a 222 “Data out of

range” error message.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 67

LBSFXX Series True-RMS Power Sensor Programming Guide v1

MEMory:TABLe:FREQuency

Syntax:

Most common forms:
MEM:TABL:FREQ <frequency>,<frequency>,<frequency>, … <frequency>

Long forms:
MEMORY:TABLE:FREQUENCY <frequency>,<frequency>,<frequency>, … <frequency>

Description:

This command allows the user to enter a sorted frequency list into the currently selected table. The previous

values in the selected table are cleared. As noted, the list of frequencies must be entered in ascending (sorted)

order.

If a signal is measured, and the frequency as set by the user is outside the range of points the sensor selects the

closest point. So if the set frequency is below the lowest point in the table, then sensor uses the first point in the

table. If the frequency set frequency is above the last (highest) point in the table, then the last point will be

used.

When entering the frequencies, the frequency can be entered without any units. In this case the units are

assumed to be Hz. However you can enter the values with the units shown below. Also note, as with commands,

these entries are case insensitive.

8. Hz

9. kHz

10. MHz

11. GHz

In any case, frequencies are truncated (not rounded) to the closest kHz.

Examples:

In this example the number of points is queried. The number returned is “+NAN”. This indicates a table has not

been selected as shown in subsequent commands. We eventually select a table (“CUSTOM_B”) and query the

number of frequency points again. At this point the value of zero is returned. Then we proceed to add frequency

points. These points are checked. Then the same number of gain points are added and then checked.

0000025 → MEM:TABL:FREQ:POIN?

0000026 ← +NAN

0000027 → MEM:TABL:SEL?

0000028 ←

0000029 → MEM:CAT:TABL?

0000030 ←

0,4800,"CUSTOM_A,TABL,0","CUSTOM_B,TABL,0","CUSTOM_C,TABL,0","CUSTOM_D,TABL,0","CUSTOM_E,TABL

,0","CUSTOM_F,TABL,0","CUSTOM_G,TABL,0","CUSTOM_H,TABL,0","CUSTOM_I,TABL,0","CUSTOM_J,TABL,0"

0000031 → MEM:TABL:SEL "CUSTOM_B"

0000032 → MEM:TABL:FREQ:POIN?

0000033 ← +0.000000E+00

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 68

LBSFXX Series True-RMS Power Sensor Programming Guide v1

0000034 → MEM:TABL:FREQ 500MHZ,1GHZ,2GHZ,3GHZ

0000035 → MEM:TABL:FREQ?

0000036 ← 5.000000E+08,1.000000E+09,2.000000E+09,3.000000E+09

0000037 → MEM:TABL:FREQ:POIN?

0000038 ← +4.000000E+00

0000039 → MEM:TABL:GAIN 50.0, 100.0,150.0, 100.0

0000040 → MEM:TABL:GAIN:POIN?

0000041 ← +4.000000E+00

0000042 → MEM:TABL:GAIN?

0000043 ← 5.000000e+01,1.000000e+02,1.500000e+02,1.000000e+02

Common Error Messages:

12. Attempting to add more than 80 points results in error -108, “Parameter not allowed”

13. If the frequencies are not entered in ascending, this results in error -220, Parameter error: Frequency list

must be in ascending order”

14. If a table has not been selected (MEM:TABL:SEL) then error -221 “Settings conflict” results

15. Any attempt to enter frequencies outside the allowable range (1kHz to 1000GHz) results in a -222 “Data

out of range” error.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 69

LBSFXX Series True-RMS Power Sensor Programming Guide v1

MEMory:TABLe:FREQuency:POINts?/qonly/

Syntax:

Most common forms:
MEM:TABL:FREQ:POIN?

Long forms:
MEMORY:TABLE:FREQUENCY:POINTS?

Description:

This command returns the number of frequency points in the currently selected table. If a table is not selected it

returns +NAN.

Examples:

In this example the number of points is queried. The number returned is “+NAN”. This indicates a table has not

been selected as shown in subsequent commands. We eventually select a table (“CUSTOM_B”) and query the

number of frequency points again. Now a value of zero is returned. Then we proceed to add frequency points,

gain points and rechecked the count in each case.

0000025 → MEM:TABL:FREQ:POIN?

0000026 ← +NAN

0000027 → MEM:TABL:SEL?

0000028 ←

0000029 → MEM:CAT:TABL?

0000030 ←

0,4800,"CUSTOM_A,TABL,0","CUSTOM_B,TABL,0","CUSTOM_C,TABL,0","CUSTOM_D,TABL,0","CUSTOM_E,TABL

,0","CUSTOM_F,TABL,0","CUSTOM_G,TABL,0","CUSTOM_H,TABL,0","CUSTOM_I,TABL,0","CUSTOM_J,TABL,0"

0000031 → MEM:TABL:SEL "CUSTOM_B"

0000032 → MEM:TABL:FREQ:POIN?

0000033 ← +0.000000E+00

0000034 → MEM:TABL:FREQ 500MHZ,1GHZ,2GHZ,3GHZ

0000035 → MEM:TABL:FREQ?

0000036 ← 5.000000E+08,1.000000E+09,2.000000E+09,3.000000E+09

0000037 → MEM:TABL:FREQ:POIN?

0000038 ← +4.000000E+00

0000039 → MEM:TABL:GAIN 50.0, 100.0,150.0, 100.0

0000040 → MEM:TABL:GAIN:POIN?

0000041 ← +4.000000E+00

0000042 → MEM:TABL:GAIN?

0000043 ← 5.000000e+01,1.000000e+02,1.500000e+02,1.000000e+02

Common Error Messages:

16. Attempting to add more than 80 points result in a -108, “Parameter not allowed” error

17. If the frequencies are not entered in ascending results in error -220

18. Any attempt to enter frequencies outside the allowable range (1kHz to 1000GHz) results in a -222 “Data

out of range” error.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 70

LBSFXX Series True-RMS Power Sensor Programming Guide v1

MEMory:TABLe:GAIN[:MAGNitude]

Syntax:

Most common forms:
MEM:TABL:GAIN <gain>,<gain>,<gain> … <gain>

MEM:TABL:GAIN?

Long forms:
MEMORY:TABLE:GAIN:MAGNITUDE <gain>,<gain>,<gain> … <gain>

MEMORY:TABLE:GAIN:MAGNITUDE?

Description:

This command allows the user to enter or query a sequence of offsets. These offsets are associated with the

corresponding frequency, by order, in currently selected table. Any previous magnitude values in the selected

table are cleared. All gain values are in percent.

Note that FDO offsets describe the system response. As a result these offsets be removed or subtracted from

the uncorrected measured value to arrive at the corrected value.

For example, a system with a gain of 50% is interpreted as a 3.01dB loss. More correctly, the system response is

-3.01dB (note the sign). This means that to arrive at the corrected value we must subtract -3.01dB from the

uncorrected value.

So, assume we measured an uncorrected value of +10dBm. This uncorrected measured value includes the

system response. To correct this value the system response must be removed or subtracted from the

uncorrected value. The system response (which is -3.01dB or a 3.01dB loss) must be subtracted from +10dBm.

This correction yields a corrected value of 13.01dBm. The arithmetic is as follows (note signs):

+10dBm – (-3.01dB) =

+10dBm + 3dB = 13.0dBm.

If a signal is measured, and the frequency selected by the user is outside the range of FDO frequency points, the

sensor selects the closest point. So if selected frequency is below the lowest point in the table, the sensor uses

the first point in the table. Conversely, if the selected frequency is above the last (highest) point in the table,

then the last point will be used.

Simple, straight line interpolation (frequency and Watts) is used for signals whose selected frequency falls within

the bounds of FDO frequency points.

Again, when entering the correction the value units are assumed to be in percent. And the values reflect the

system response. The maximum range of correction is 1 per cent to 150 per cent. To calculate or convert

between offset (percent or dB) use on of the following:

System response in dB = 10 * Log10 (Offset in percent/100.0)

System response offset in per cent = 100.0 * 10.0(offset in dB/10.0)

You may find the following table to be a useful crosscheck:

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 71

LBSFXX Series True-RMS Power Sensor Programming Guide v1

Percent dB

1 -20.0dB

10 -10.0dB

50 -3.01dB

75 -1.25dB

100 +0.00dB

125 +0.97dB

150 +1.76dB

The correction is applied in the following manner (dB):

corrected valuedbm = uncorrected valuedbm - FDOdbm

For example, assume a value of -20.0dBm was measured before FDO correction. If FDO value of 50% would

cause the -3.01dB of correction to be subtracted from the measured value. So, that -20dBm would be reported

as -16.99dBm. In the same way, an FDO of 150% would cause +1.76 to be subtracted from -20dBm resulting in a

corrected value as -21.76dBm.

Examples:

0000025 → MEM:TABL:FREQ:POIN?

0000026 ← +NAN

0000027 → MEM:TABL:SEL?

0000028 ←

0000029 → MEM:CAT:TABL?

0000030 ←

0,4800,"CUSTOM_A,TABL,0","CUSTOM_B,TABL,0","CUSTOM_C,TABL,0","CUSTOM_D,TABL,0","CUSTOM_E,TABL

,0","CUSTOM_F,TABL,0","CUSTOM_G,TABL,0","CUSTOM_H,TABL,0","CUSTOM_I,TABL,0","CUSTOM_J,TABL,0"

0000031 → MEM:TABL:SEL "CUSTOM_B"

0000032 → MEM:TABL:FREQ:POIN?

0000033 ← +0.000000E+00

0000034 → MEM:TABL:FREQ 500MHZ,1GHZ,2GHZ,3GHZ

0000035 → MEM:TABL:FREQ?

0000036 ← 5.000000E+08,1.000000E+09,2.000000E+09,3.000000E+09

0000037 → MEM:TABL:FREQ:POIN?

0000038 ← +4.000000E+00

0000039 → MEM:TABL:GAIN 50.0, 100.0,150.0, 100.0

0000040 → MEM:TABL:GAIN:POIN?

0000041 ← +4.000000E+00

0000042 → MEM:TABL:GAIN?

0000043 ← 5.000000e+01,1.000000e+02,1.500000e+02,1.000000e+02

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 72

LBSFXX Series True-RMS Power Sensor Programming Guide v1

MEMory:TABLe:GAIN[:MAGNitude]:POINts?/qonly/

Syntax:

Most common forms:
MEM:TABL:GAIN:POIN?

Long forms:
MEMORY:TABLE:GAIN:MAGNITUE:POINTS?

Description:

This command returns the number of points in the table currently selected for editing (using the MEM:TABL:SEL

command).

Examples:

0000025 → MEM:TABL:FREQ:POIN?

0000026 ← +NAN

0000027 → MEM:TABL:SEL?

0000028 ←

0000029 → MEM:CAT:TABL?

0000030 ←

0,4800,"CUSTOM_A,TABL,0","CUSTOM_B,TABL,0","CUSTOM_C,TABL,0","CUSTOM_D,TABL,0","CUSTOM_E,TABL

,0","CUSTOM_F,TABL,0","CUSTOM_G,TABL,0","CUSTOM_H,TABL,0","CUSTOM_I,TABL,0","CUSTOM_J,TABL,0"

0000031 → MEM:TABL:SEL "CUSTOM_B"

0000032 → MEM:TABL:FREQ:POIN?

0000033 ← +0.000000E+00

0000034 → MEM:TABL:FREQ 500MHZ,1GHZ,2GHZ,3GHZ

0000035 → MEM:TABL:FREQ?

0000036 ← 5.000000E+08,1.000000E+09,2.000000E+09,3.000000E+09

0000037 → MEM:TABL:FREQ:POIN?

0000038 ← +4.000000E+00

0000039 → MEM:TABL:GAIN 50.0, 100.0,150.0, 100.0

0000040 → MEM:TABL:GAIN:POIN?

0000041 ← +4.000000E+00

0000042 → MEM:TABL:GAIN?

0000043 ← 5.000000e+01,1.000000e+02,1.500000e+02,1.000000e+02

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 73

LBSFXX Series True-RMS Power Sensor Programming Guide v1

MEMory:TABLe:MOVE/nquery/

Syntax:

Most common form:
MEM:TABL:MOVE <existing table name>,<new table name>

Long form:
MEMORY:TABLE:MOVE <existing table name>,<new table name>

Description:

This command is used to rename a FDO (frequency dependent offset) table.

Examples:

0000065 → MEM::CAT:TABL?

0000066 ←

24,4800,"CUSTOM_A,TABL,0","CUSTOM_B,TABL,24","CUSTOM_C,TABL,0","CUSTOM_D,TABL,0","CUSTOM_E,TA

BL,0","CUSTOM_F,TABL,0","CUSTOM_G,TABL,0","CUSTOM_H,TABL,0","CUSTOM_I,TABL,0","CUSTOM_J,TABL,

0"

0000067 → MEM:TABL:MOVE "CUSTOM_B","CUSTOM_Z"

0000068 → MEM::CAT:TABL?

0000069 ←

24,4800,"CUSTOM_A,TABL,0","CUSTOM_Z,TABL,24","CUSTOM_C,TABL,0","CUSTOM_D,TABL,0","CUSTOM_E,TA

BL,0","CUSTOM_F,TABL,0","CUSTOM_G,TABL,0","CUSTOM_H,TABL,0","CUSTOM_I,TABL,0","CUSTOM_J,TABL,

0"

0000070 → MEM:TABL:MOVE "CUSTOM_Z","CUSTOM_B"

0000071 → MEM::CAT:TABL?

0000072 ←

24,4800,"CUSTOM_A,TABL,0","CUSTOM_B,TABL,24","CUSTOM_C,TABL,0","CUSTOM_D,TABL,0","CUSTOM_E,TA

BL,0","CUSTOM_F,TABL,0","CUSTOM_G,TABL,0","CUSTOM_H,TABL,0","CUSTOM_I,TABL,0","CUSTOM_J,TABL,

0"

Common Error Messages:

19. If either table name is invalid this results in error -224, “Illegal parameter value”

20. If the first parameter does not match and existing table the error -226, “File name not found is issued.

21. If the second parameter matches an existing table then error -257,”File name error” is issued.

Other Notes:

The first parameter must match and existing file exactly. File names must consist of only upper and lower case

letters (A…Z, a…z), the numbers 0...9 and the underscore. No other characters are permitted.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 74

LBSFXX Series True-RMS Power Sensor Programming Guide v1

MEMory:TABLe:SELect

Syntax:

Most common forms:
MEM:TABL:SEL <table name>

MEM:TABL:SEL?

Long forms:
MEMORY:TABLE:SELECT <table name>

MEMORY:TABLE:SELECT?

Description:

This command selects an FDO (frequency dependent offset) table for editing using the memory commands.

Examples:

0000077 → MEM::CAT:TABL?

0000078 ←

24,4800,"CUSTOM_A,TABL,0","CUSTOM_B,TABL,24","CUSTOM_C,TABL,0","CUSTOM_D,TABL,0","CUSTOM_E,TA

BL,0","CUSTOM_F,TABL,0","CUSTOM_G,TABL,0","CUSTOM_H,TABL,0","CUSTOM_I,TABL,0","CUSTOM_J,TABL,

0"

0000079 → MEM:TABL:SEL?

0000080 ←

0000081 → MEM:TABL:SEL "CUSTOM_B"

0000082 → MEM:TABL:SEL?

0000083 ← CUSTOM_B

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 75

LBSFXX Series True-RMS Power Sensor Programming Guide v1

Output

The output commands are used to control recorder and trigger outputs. When recorder out is enabled, the

sensor places DC voltage on the trigger out (TO) port that is proportional to the power in Watts. Trigger out

sends a trigger out the TO port any time a measurement is made and trigger out is enabled. Since recorder out

and trigger out share the same physical port they are by definition mutually exclusive.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 76

LBSFXX Series True-RMS Power Sensor Programming Guide v1

OUTPut:RECorder:FEED

OUTPut:RECorder1:FEED

Syntax:

Most common forms:
OUTP:REC:FEED?

OUTP:REC:FEED CALC

Long forms:
OUTPUT:RECORDER:FEED?

OUTPUT:RECORDER:FEED CACL

OUTPUT:RECORDER:FEED CACL1

Description:

This command is included to support command compatibility with other sensors that support recorder out. It

serves no additional purpose. The command takes and single parameter and that parameter must be CALC or

CALC1 which are equivalent.

Examples:

This example shows setting and getting the parameter.

0000003 → OUTP:REC:FEED?

0000004 ← CALC

0000005 → OUTP:REC:FEED CALC

0000006 → OUTP:REC:FEED CALC1

0000007 → OUTP:REC:FEED?

0000008 ← CALC1

On Reset

The parameter must always be CALC or CALC1. These values are equivalent.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 77

LBSFXX Series True-RMS Power Sensor Programming Guide v1

OUTPut:RECorder:FILTer

OUTPut:RECorder1:FILTer

Syntax:

Most common forms:
OUTP:REC:FILT <value>

OUTP:REC:FILT?

Long forms:
OUTPUT:RECORDER:FILTER <value>

OUTPUT:RECORDER1:FILTER <value>

OUTPUT:RECORDER:FILTER?

OUTPUT:RECORDER1:FILTER?

Description:

This command sets bandwidth of recorder out. Valid values for the bandwidth are between 0.001HZ to 32Hz

inclusive. The default value is 32Hz. The maximum output value is 1V into a 1kOhm load (2.0V into an open). The

filter is used to affect the reported value. The voltage at the output follows the reported value.

Example:

This is a long example. The setup for this example consists of connecting the sensor to a 1GHz RF source with a

power level of 10.0dBm. During the example the power level should be changed between +10dBm and 0dBm. A

DC voltmeter should be connected to the trigger output (recorder out utilizes the trigger output connection).

The output can be considered unloaded since the impedance of the voltmeter is about >1MOhm.

The sensor is setup accomplished using the SPCI commands shown below. Finally, power is decreased by 3dB

and continuous measurements are initiated simultaneously. The resultant measurements are about 1 second

apart. This can be done in the interactive IO by:

22. Setting the latency to 1 sec

23. Sending one FETC? command

24. Then simultaneously

o Checking continuous

o Decrease the source 1GHz power level by 3dB simultaneously

After about 10 measurements, uncheck continuous to halt measurements. Then change the filter to 32Hz and

repeat the process. In the first case using 0.1Hz, the measured power and measured voltage (not shown) start

at 10dBm and 2Volts (open circuit). When the power drops by 3dB the reported value (resulting from

continuous FETCH?) slowly decreases as does the voltage on the meter.

In the second case where the filter is set to 32Hz the change occurs rapidly.

0000082 → *RST

0000083 → FREQ?

0000084 ← +5.00000000E+07

0000085 → FREQ 1GHZ

0000086 → FREQ?

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 78

LBSFXX Series True-RMS Power Sensor Programming Guide v1

0000087 ← +1.00000000E+09

0000088 → INIT:CONT?

0000089 ← 0

0000090 → INIT:CONT 1

0000091 → FETC?

0000092 ← +1.00393940E+01

0000093 → OUTP:REC:FILT?

0000094 ← 3.200000E+01

0000095 → OUTP:REC:FILT 0.1

0000096 → OUTP:REC:FILT?

0000097 ← 1.000000E-01

0000098 → OUTP:REC:LIM:LOW?

0000099 ← -3.300000E+01

0000100 → OUTP:REC:LIM:LOW 0.0

0000101 → OUTP:REC:LIM:LOW?

0000102 ← +0.000000E+00

0000103 → OUTP:REC:LIM:UPP?

0000104 ← +2.000000E+01

0000105 → OUTP:REC:LIM:UPP 10.0

0000106 → OUTP:REC:LIM:UPP?

0000107 ← +1.000000E+01

0000108 → OUTP:REC:STAT?

0000109 ← 0

0000110 → OUTP:REC:STAT 1

0000111 → FETC?

0000112 ← +9.96684595E+00

0000113 → FETC?

0000114 ← +9.97565169E+00

The source and sensor frequency are set to FREQ = 1GHz. Sensor INIT:CONT = 1 is on so we can

produce a measurement with just a FETC?, We've ensured source power level is +10dBm. This

should produce 2VDC unloaded or 1VDC loaded at the TO (RO) output on the back of the sensor.

Set power level to +10dBm and wait 10 seconds. The no-load voltage should be 2VDC with the

power level at +10dBm.

0000115 → FETC?

0000116 ← +9.98380112E+00

Set the power level to 0dBm. Wait 10 seconds. The voltage should be close to 0.0VDC. And the

power level should be about 0.0dBm.

0000117 → FETC?

0000118 ← -1.26547706E-01

Now raise and lower the power level 10dB. Watch the RO voltage as you do so. You should see

the voltage take several seconds to settle at either 0.0VDC or 2.0VDC. I've set the latency

on the Interactive IO to either 0.5 or 1.0 seconds. To get a series of measurements with time

between them. I check "Continuous" quickly after changing the power level. With this filter

setting, after about 10 seconds I uncheck continuous.

In this case I've changed the source power level from +10.0dBm to 0.0dBm and very quickly

checked "Continuous". At the end I unchecked "Continuous". I observed the voltmeter change

also.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 79

LBSFXX Series True-RMS Power Sensor Programming Guide v1

0000411 → FETC?

0000412 ← -9.63773193E-02

0000413 → FETC?

0000414 ← -9.70746011E-02

0000415 → FETC?

0000416 ← -9.72791906E-02

0000417 → FETC?

0000418 ← +6.04672479E+00

0000419 → FETC?

0000420 ← +8.35610990E+00

0000421 → FETC?

0000422 ← +9.21085784E+00

0000423 → FETC?

0000424 ← +9.60174160E+00

0000425 → FETC?

0000426 ← +9.79398714E+00

0000427 → FETC?

0000428 ← +9.89131474E+00

0000429 → FETC?

0000430 ← +9.94044006E+00

0000431 → FETC?

0000432 ← +9.96530503E+00

0000433 → FETC?

0000434 ← +9.97743852E+00

You can see the power level settled after several seconds. Lowering the source power again...

0000435 → FETC?

0000436 ← +9.98264508E+00

0000437 → FETC?

0000438 ← +8.01688527E+00

0000439 → FETC?

0000440 ← +5.78197966E+00

0000441 → FETC?

0000442 ← +3.88227759E+00

0000443 → FETC?

0000444 ← +2.40653472E+00

0000445 → FETC?

0000446 ← +1.37443741E+00

0000447 → FETC?

0000448 ← +7.16433882E-01

0000449 → FETC?

0000450 ← +3.30276201E-01

0000451 → FETC?

0000452 ← +1.17082104E-01

0000453 → FETC?

0000454 ← +4.15967830E-03

0000455 → FETC?

0000456 ← -5.38437541E-02

0000457 → FETC?

0000458 ← -8.21761081E-02

0000459 → FETC?

0000460 ← -9.49067693E-02

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 80

LBSFXX Series True-RMS Power Sensor Programming Guide v1

0000461 → FETC?

0000462 ← -9.97843608E-02

Again, it took several seconds for the power level to settle. Now change the filter to 32Hz.

0000463 → OUTP:REC:FILT 32.0

0000464 → OUTP:REC:FILT?

0000465 ← 3.200000E+01

0000470 → FETC?

0000471 ← -1.01244000E-01

0000472 → FETC?

0000473 ← +1.00062548E+01

Notice, in this case (filter set to 32Hz) the measured power goes from 0.0dBm to 10.0dBm very

quickly.

On Reset

The filter value is set to 32Hz after a *RST.

Other Notes:

The range for the filter is 0.001Hz to 32Hz

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 81

LBSFXX Series True-RMS Power Sensor Programming Guide v1

OUTPut:RECorder:LIMit:LOWer

OUTPut:RECorder1:LIMit:LOWer

OUTPut:RECorder:LIMit:UPPer

OUTPut:RECorder1:LIMit:UPPer

Lower and upper limits of Recorder output operate as a pair, so it is fitting that they are covered as a pair in this

section.

Syntax:

Most common forms:
OUTP:REC:LIM:LOW <value>

OUTP:REC:LIM:UPP <value>

OUTP:REC:LIM:LOW?

OUTP:REC:LIM:UPP?

Long forms:
OUTPUT:RECORDER:LIMIT:LOWER <value>

OUTPUT:RECORDER:LIMIT:UPPER <value>

OUTPUT:RECORDER:LIMIT:LOWER?

OUTPUT:RECORDER:LIMIT:UPPER?

OUTPUT:RECORDER1:LIMIT:LOWER <value>

OUTPUT:RECORDER1:LIMIT:UPPER <value>

OUTPUT:RECORDER1:LIMIT:LOWER?

OUTPUT:RECORDER1:LIMIT:UPPER?

Description:

The commands set the power measurement boundaries associated with recorder output voltage. The voltage

output is a straight line interpolation of the lower and upper limits in Watts. The voltage out is between 0VDC

and 1VDC into a 1kOhm load. If no load is attached then the voltage is twice this value or between 0VDC and

2VDC. An open can be approximated nicely with most DC voltmeters (high impedance).

An example calculation is shown below. The voltages are reported assuming the recorder output is properly

loaded (1kOhm load). Note that all calculations use Watts.

Limlower = 1mW (or +0.0dBm)

Limupper = 10mW (or +10.0dBm)

Conditions:

25. Measured power between 1mW and 10mW

o Vout = (Pmeas - Limlower)/(Limupper - Limlower)

o So that for 5mW (or +6.99dBm):

Vout = (5.0 – 1.0)/(10.0 – 1.0) = 0.444VDC into 1kOhm

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 82

LBSFXX Series True-RMS Power Sensor Programming Guide v1

If the voltage was measured across an open (such as a voltmeter) the voltage will be twice the

calculated value or 0.888VDC

26. Measured power below Limlower or 1mW: Vout = 0.0VDC

27. Measured power above Limupper or 10mW: Vout = 1.0VDC (or 2.0VDC into an open)

Example:

In this example we connect the sensor to an RF source and set the power levels as measured below. A DC

voltmeter was connected to the TO or recorder output on the back of the sensor. The calculations for the

voltages were done exactly has shown earlier in this section.

0000487 → *RST

0000488 → OUTP:REC:FILT?

0000489 ← 3.200000E+01

0000490 → OUTP:REC:LIM:LOW?

0000491 ← -3.300000E+01

0000492 → OUTP:REC:LIM:LOW 0.0

0000493 → OUTP:REC:LIM:UPP?

0000494 ← +2.000000E+01

0000495 → OUTP:REC:LIM:UPP 10.0

0000496 → OUTP:REC:LIM:LOW?

0000497 ← +0.000000E+00

0000498 → OUTP:REC:LIM:UPP?

0000499 ← +1.000000E+01

0000500 → INIT:CONT?

0000501 ← 0

0000502 → INIT:CONT 1

0000503 → FETCH?

0000504 ← +6.92778023E+00

0000505 → OUTP:REC:STAT?

0000506 ← 0

0000507 → OUTP:REC:STAT 1

0000508 → FETCH?

0000509 ← +6.96345236E+00

Voltage measured using voltmeter was 0.891VDC.

+6.96345236E+00 -> 4.969mW

Calculated voltage = (4.969 - 1)/(10.0 - 1) = 0.441VDC into 1kOhm or

 0.882VDC into an open (as measured)

0000510 → FETCH?

0000511 ← +4.03776174E+00

Voltage measured using voltmeter was 0.344VDC

+4.03776174E+00 -> 2.534mW

Calculated voltage = (2.534 - 1)/(10.0 - 1) = 0.170VDC into 1kOhm or

 0.340VDC into an open (as measured)

On Reset

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 83

LBSFXX Series True-RMS Power Sensor Programming Guide v1

The lower limit is set to -30.0dBm and the upper limit is set to +20.0dBm.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 84

LBSFXX Series True-RMS Power Sensor Programming Guide v1

OUTPut:RECorder:STATe

OUTPut:RECorder1:STATe

Syntax:

Most common forms:
OUTP:REC:STAT?

OUTP:REC:STAT <0 or 1>

Long forms:

OUTPUT:RECORDER:STATE?

Description:

This command checks the state or recorder out or disables or enables recorder out.

Examples:

In this series of commands the recorder output is turned on and off.

0000513 → *RST

Check the state of recorder out

0000514 → OUTP:REC:STAT?

0000515 ← 0

Set the state of recorder out to enabled

0000516 → OUTP:REC:STAT 1

Recheck the state

0000517 → OUTP:REC:STAT?

0000518 ← 1

On Reset

The recorder output default state is off or 0. And it is place in this state on *RST or power on.

Other Notes:

If recorder out is enabled and then trigger out is enabled recorder out is then disabled.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 85

LBSFXX Series True-RMS Power Sensor Programming Guide v1

OUTPut:TRIGger:SLOPe

Syntax:

Most common forms:
OUTP:TRIG:SLOP?

OUTP:TRIG:SLOP [NEG|POS]

Long forms:
OUTPUT:TRIGGER:SLOPE?

OUTPUT:TRIGGER:SLOPE [NEG|POS]

Description:

This command determines whether the TTL compatible trigger out signal will present a negative or positive

pulse when a measurement is made. If the pulse is positive then with no measurement the trigger out voltage

will be 0V. When a measurement occurs (assuming trigger output is enabled) a positive going TTL compatible

pulse is sent to the trigger out port. The pulse width is approximately 500ns as shown below.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 86

LBSFXX Series True-RMS Power Sensor Programming Guide v1

If the trigger slope is negative, a negative going pulse will be placed on the output port as shown below.

Examples:

In this case we are checking and setting the trigger slope. Then doing a *RST and testing the default value after a

reset.

0001111 → OUTP:TRIG:SLOP?

0001112 ← NEG

0001113 → OUTP:TRIG:SLOP POS

0001114 → OUTP:TRIG:SLOP?

0001115 ← POS

0001116 → OUTP:TRIG:SLOP NEG

0001117 → OUTP:TRIG:SLOP?

0001118 ← NEG

0001119 → *RST

0001120 → OUTP:TRIG:SLOP?

0001121 ← POS

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 87

LBSFXX Series True-RMS Power Sensor Programming Guide v1

OUTPut:TRIGger[:STATe]

Syntax:

Most common forms:
OUTP:TRIG:STAT?

OUTP:TRIG:STAT [0|1]

Long forms:
OUTPUT:TRIGGER:STATE?

OUTPUT:TRIGGER:STATE [0|1]

Description:

This command enables or disables the trigger out signal that is placed on the TO port. A trigger is generated

each time a measurement is made.

Examples:

0001119 → *RST

0001120 → OUTP:TRIG:SLOP?

0001121 ← POS

0001122 → OUTP:TRIG:STAT?

0001123 ← 0

0001124 → OUTP:TRIG:STAT 1

0001125 → OUTP:TRIG:STAT?

0001126 ← 1

0001127 → OUTP:TRIG:STAT 0

0001128 → OUTP:TRIG:STAT?

0001129 ← 0

On Reset

On reset the trigger state is set to 0, OFF or disabled.

Other Notes:

Setting OUTP:TRIG:STAT to 1 or enabled will disable recorder out if it is disabled. In a like manner, enabling

recorder out will disable OUTP:TRIG:STAT.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 88

LBSFXX Series True-RMS Power Sensor Programming Guide v1

Sense

This group of commands controls the measurement parameters and processes. It includes control of the

samples per average, many kinds of corrections, how much averaging is to be done, some aspects of triggering,

setting up frequency and power sweeps and many other aspects. Aside from the basic measurement commands

(MEAS?, READ? and FETCH) this set of command are most central to the purpose of the power sensor.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 89

LBSFXX Series True-RMS Power Sensor Programming Guide v1

Averaging Commands Overview

These commands control the measurement time. Measurement time and measurement noise are usually traded

off against each other. As measurement time increases, measurement noise decreases. To give you an idea of

how this might affect your measurement consider the following chart.

As averaging is increased from 1 average per point: to 10 averages per point: and finally to 100 averages the

noise (point to point variation) of the measurement decreases. These measurements were made at about -

50dBm. However, another consideration is time.

To understand the effects of time and averaging you may want to consider the following. I Using the

InteractiveIO application by executing the following (RF source is set to -50dBm):

0000203 → *RST

0000204 → aver:coun:auto?

0000205 ← 1

0000206 → aver:coun:auto 0

0000207 → aver:coun:auto?

0000208 ← 0

0000209 → aver:coun?

0000210 ← +4

0000211 → aver:coun 1

0000212 → aver:coun?

0000213 ← +1

0000214 → SENS:AVER:SDET?

0000215 ← 1

0000216 → SENS:AVER:SDET 0

0000217 → read?

0000218 ← -5.01313042E+01

Then I created a simple read macro by highlighting the read? and adding a macro named “SimpleRead”. Then I

repeated “SimpleRead” 20 times (Ctrl-T) for the following result.

------- Start Macro [#SimpleRead#]

0000219 → read?

0000220 ← -5.03173258E+01

-50.6

-50.4

-50.2

-50

-49.8

-49.6

-49.4

0 20 40 60 80 100 120

Averaging vs. Measurement Noise

1 Average

10 Averages

100 Averages

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 90

LBSFXX Series True-RMS Power Sensor Programming Guide v1

------- End Macro

…

…

…

0000278 → read?

0000280 ← -5.00247631E+01

------- End Macro [#SimpleRead#]

------- #SimpleRead# was repeated 20 times in 1011 ms

I changed AVER:COUN to 10 then repeated “SimpleMacro” 20 time with the following result:

0000281 → aver:coun 10

------- Start Macro [#SimpleRead#]

0000282 → read?

0000284 ← -5.00902647E+01

------- End Macro

…

…

…

0000339 → read?

0000341 ← -5.00950042E+01

------- End Macro [#SimpleRead#]

------- #SimpleRead# was repeated 20 times in 7922 ms

Then I set AVER:COUN to 100 and repeated the process with the following result:

0000342 → aver:coun 100

------- Start Macro [#SimpleRead#]

0000343 → read?

0000345 ← -5.01078571E+01

…

…

…

0000400 → read?

0000402 ← -5.01120167E+01

------- End Macro [#SimpleRead#]

------- #SimpleRead# was repeated 20 times in 77044 ms

The table below summarizes the impact of average count on measurement time:

AVER:COUN Measurement Time
(sec)

1 0.051

10 0.396

100 3.850

The increase in measurement time is proportional to the number of averages. AVER:COUN can be increased to

1000 or even to 4096. And, increasing it will decrease measurement noise. On the other hand, measurement

time might become prohibitive. Still, for some situations, this increased measurement time is acceptable.

The following properties may affect total measurement time:

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 91

LBSFXX Series True-RMS Power Sensor Programming Guide v1

 [SENSE:]AVERage:COUNt

 [SENSE:]AVERage:AUTO

 [SENSE:]AVERage:STATe

 [SENSE:]MRATe

 [SENSE:]AVERage:SDETect

 [SENSE:]BUFFer:COUNt

 Triggering setup

All but the last one (triggering setup) will be covered in this, SENSE, section.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 92

LBSFXX Series True-RMS Power Sensor Programming Guide v1

[SENSe]:AVERage:COUNt

SENSe1:AVERage:COUNt

Syntax:

Most common forms:
AVER:COUN?

AVER:COUN <NUM>

AVER:COUN? MIN

AVER:COUN? MAX

Long forms:
SENSE:AVERAGE:COUNT?

SENSE:AVERAGE:COUNT? MIN

SENSE:AVERAGE:COUNT? MAX

SENSE1:AVERAGE:COUNT?

SENSE1:AVERAGE:COUNT? MIN

SENSE1:AVERAGE:COUNT? MAX

SENSE:AVERAGE:COUNT <NUM>

SENSE1:AVERAGE:COUNT <NUM>

Description:

This sets or gets the number of averages per measurement. This command also accepts MIN and MAX as pass

parameters. These values request the minimum and maximum values for AVER:COUN.

An average should not be confused with sample. Generally, an average is not equivalent to a sample. Generally,

each average is the composed of several samples. The average property also interacts with the MRAT

(measurement rate) property or command.

Examples:

0000203 → *RST

0000204 → aver:coun:auto?

0000205 ← 1

0000206 → aver:coun:auto 0

0000207 → aver:coun:auto?

0000208 ← 0

0000209 → aver:coun?

0000210 ← +4

0000211 → aver:coun 1

0000212 → aver:coun?

0000213 ← +1

0000445 → AVER:COUN? MIN

0000446 ← +1

0000447 → AVER:COUN? MAX

0000448 ← +4096

On Reset

On reset the average count is set to 4.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 93

LBSFXX Series True-RMS Power Sensor Programming Guide v1

Common Error Messages:

If SENSE:MRATE is set to FAST and the user attempts to set averages, a -221 “Settings conflict” error message is

issued. This is because MRAT FAST does not allow averaging. However, if SENSE:MRATE is set to SUPer then

averaging parameter can be set without issue.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 94

LBSFXX Series True-RMS Power Sensor Programming Guide v1

[SENSe]:AVERage:COUNt:AUTO

SENSe1:AVERage:COUNt:AUTO

Syntax:

Most common forms:
AVER:COUN:AUTO?

AVER:COUN:AUTO 0

AVER:COUN:AUTO 1

Long forms:
SENSE:AVERAGE:COUNT:AUTO?

SENSE:AVERAGE:COUNT:AUTO 0

SENSE:AVERAGE:COUNT:AUTO 1

SENSE1:AVERAGE:COUNT:AUTO?

SENSE1:AVERAGE:COUNT:AUTO 0

SENSE1:AVERAGE:COUNT:AUTO 1

Description:

This command allows the user to control the state of the automatic averaging (or auto-averaging) feature. This is

also referred to as the auto-filter. This command also allows the user to query the state of auto-averaging. When

enabled, the average count command rendered ineffective. So, the user is not required to set the average count

explicitly. Instead, the sensor samples the incoming signal and adjusts the averaging based on the resolution

specified by the user. The resolution is set as part of the MEASure? or CONFigure command . For a more

thorough treatment of these commands refer to “The Basics of Making Power Measurements” in this document.

It is important to note that this command interacts with or is affected by the following parameters or

commands:

 AVERAGE:STATE or AVER:STAT – enables or disables averaging and so that the state of

AVER:COUN:AUTO is overridden but its value remains unchanged.

 AVER:STAT is enabled anytime this command or parameter to ON or 1

 Both MEAS? and CONF automatically enable AVER:STATE:AUTO

 AVERAGE:COUNT or AVER:COUN disables AVER:COUN:AUTO anytime AVER:COUN is set

 MRAT disallows AVER:COUN:AUTO to be enabled if MRAT = FAST or SUPER

The table below gives the averages for various power levels when this parameter is enabled:

Examples:

On Reset

A *RST command enables AVER:COUN:AUTO.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 95

LBSFXX Series True-RMS Power Sensor Programming Guide v1

Common Error Messages:

Other Notes:

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 96

LBSFXX Series True-RMS Power Sensor Programming Guide v1

[SENSe]:AVERage:SDETect

SENSe1:AVERage:SDETect

Syntax:

Most common forms:
AVER:SDET?

AVER:SDET 1

AVER:SDET 0

Long forms:
SENSE:AVERAGE:SDETECT?

SENSE:AVERAGE:SDETECT 0

SENSE:AVERAGE:SDETECT 1

SENSE1:AVERAGE:SDETECT?

SENSE1:AVERAGE:SDETECT 0

SENSE1:AVERAGE:SDETECT 1

Description:

Step detection (SDET) is used to improve the chances of getting a more settled measurement. This is

accomplished by monitoring the incoming signal. If the average power changes more than 12.5% (about

0.511dB) during the course of the measurement then the signal automatically is once re-measured. Note that

this can increase the time required to return a value.

The LBSFxx allows 1 re-measurement so that the increase in measurement time is limited to A doubling.

However, it is possible that the LBSFxx will return an unsettled value in some cases.

Examples:

In this example the source power is varied by 3dB during the course of the measurement. The average count is

set long for purposes of demonstration. The measurement time is noted for each case with SDET set to 0 and 1.

The increase in measurement time is easily detected with these settings. Notice that I’ve created a macro called

INIT_READ. I set the count to 1. Then I selected the macro and pressed Ctrl-T so that the time to complete the

macro is recorded.

This is just setup…

0000008 → *RST

0000009 → AVER:COUN:AUTO 0

0000010 → AVER:COUN 100

0000011 → MRAT NORM

Start with step detection disabled…

0000012 → AVER:SDET 0

During this measurement the power was left unchanged. And SDET was 0 or OFF

------- Start Macro [#JUST_READ#]

0000013 → READ?

0000015 ← -1.03571152E+01

------- End Macro [#JUST_READ#]

------- #JUST_READ# was repeated 1 times in 3858 ms

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 97

LBSFXX Series True-RMS Power Sensor Programming Guide v1

I changed power during measurement by 3dB. Measurement time was unaffected. However, the

average power is incorrect.

------- Start Macro [#JUST_READ#]

0000016 → READ?

0000018 ← -8.04517581E+00

------- End Macro [#JUST_READ#]

------- #JUST_READ# was repeated 1 times in 3852 ms

Now I’ll enable step detection…

0000019 → AVER:SDET 1

And I changed power during the measurement by 3dB. Total time increased because SDET was

enabled but the average power reading is now correct.

------- Start Macro [#INIT_READ#]

0000020 → READ?

0000022 ← -4.41788894E+00

------- End Macro [#JUST_READ#]

------- #JUST_READ# was repeated 1 times in 5070 ms

On Reset

Step detection is enabled by default on power up and reset.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 98

LBSFXX Series True-RMS Power Sensor Programming Guide v1

[SENSe]:AVERage[:STATe]

SENSe1:AVERage[:STATe]

Syntax:

Most common forms:
AVER?

AVER 0

AVER 1

Long forms:
SENSE:AVERAGE:STATE?

SENSE:AVERAGE:STATE 0

SENSE:AVERAGE:STATE 1

SENSE1:AVERAGE:STATE?

SENSE1:AVERAGE:STATE 0

SENSE1:AVERAGE:STATE 1

Description:

This enables or disables averaging. This includes auto averaging, average count and step detection. This allows

measurements to return very quickly so that measurements are often not settled. However, one common use of

disabling averaging is to get a quick sense of the measured power level.

Examples:

In this example average count is set to 100 and averaging (AVER:STAT) is enabled then disabled. Note the

dramatic change in measurement time.

0000023 → *RST

0000024 → AVER:COUN:AUTO 0

0000025 → AVER:COUN 100

0000026 → AVER:STAT?

0000027 ← 1

------- Start Macro [#JUST_READ#]

0000028 → READ?

0000029 ← -4.43118460E+00

------- End Macro [#JUST_READ#]

------- Start Macro [#JUST_READ#]

0000030 → READ?

0000032 ← -4.43476595E+00

------- End Macro [#JUST_READ#]

------- #JUST_READ# was repeated 1 times in 3853 ms

0000033 → AVER:STAT 0

------- Start Macro [#JUST_READ#]

0000034 → READ?

0000036 ← -4.43769685E+00

------- End Macro [#JUST_READ#]

------- #JUST_READ# was repeated 1 times in 51 ms

On Reset

Averaging is by default on at reset and power on.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 99

LBSFXX Series True-RMS Power Sensor Programming Guide v1

Common Error Messages:

If AVER:STAT is set to 1 while MRAT is set to FAST. This message does not apply when MRAT is set to SUPER (or

SUP).

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 100

LBSFXX Series True-RMS Power Sensor Programming Guide v1

[SENSe]:BUFFer:COUNt

SENSe1:BUFFer:COUNt

Syntax:

Most common forms:
BUFF:COUN?

BUFF:COUN <NUMBER)

Long forms:
SENSE:BUFFER:COUNT?

SENSE:BUFFER:COUNT? MIN

SENSE:BUFFER:COUNT? MAX

SENSE:BUFFER:COUNT <NUMBER>

Description:

Buffer count is used with external triggering. The range for buffer count is 1 to 250. Frequency sweep takes

control of buffer count when it is enabled thereby causing buffer count to be overwritten.

Examples:

0000048 → *RST

0000049 → BUFF:COUN?

0000050 ← +1

0000051 → BUFF:COUN 100

0000058 → BUFF:COUN?

0000059 ← +100

On Reset

Buffer count is set to 1 by default.

Common Error Messages:

If FREQ:STEP is not equal to zero error message -221,”Settings conflict” will be generated

Other Notes:

This parameter is used by frequency sweep. So that the value of BUFF:COUN is read only unless FREQ:STEP = 0.

[SENSe]:CORRection:CSET2:STATe

SENSe1:CORRection:CSET2:STATe

[SENSe]:CORRection:CSET2[:SELect]

SENSe1:CORRection:CSET2[:SELect]

[SENSe]:CORRection:FDOFfset[:INPut][:MAGNitude]?/qonly/

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 101

LBSFXX Series True-RMS Power Sensor Programming Guide v1

SENSe1:CORRection:FDOFfset[:INPut][:MAGNitude]?/qonly/

[SENSe]:CORRection:GAIN4[:INPut][:MAGNitude]?/qonly/

SENSe1:CORRection:GAIN4[:INPut][:MAGNitude]?/qonly/

Syntax:

Most common forms:
CORR:CSET2 <TABLE NAME>

CORR:CSET2:STAT 0

CORR:CSET2:STAT 1

CORR:FDOF?

Long forms:
SENSE:CORRECTION:CSET2:SELECT <TABLE NAME>

SENSE:CORRECTION:CSET2:STATE 0

SENSE:CORRECTION:CSET2:STATE 1

SENSE:CORRECTION:FDOFFSET:INPUT:MAGNITUDE?

SENSE1:CORRECTION:CSET2:SELECT <TABLE NAME>

SENSE1:CORRECTION:CSET2:STATE 0

SENSE1:CORRECTION:CSET2:STATE 1

SENSE1:CORRECTION:FDOFFSET:INPUT:MAGNITUDE?

Description:

The CSET2 (FDOF) commands covered here apply to frequency dependent offset tables. They are covered as a

set because they are used in concert. Other related commands are the MEM:TABL commands covered in

considerable detail in the memory section of this manual. As with other STAT or STATE commands, the

CORR:CSET2:STAT command enables and disables the frequency dependent offset table. While the CORR:CSET2

command selects one of 10 (0…9) tables.

Note that GAIN4 refers to FDOFFSET. And that CORR:FDOF? returns the FDO offset applied to the current

measurement. This will be a value of 100.0 (meaning 100% or no offset) when GAIN2 is disabled. This function is

handy for verifying your frequency dependent offset table.

Examples:

This example focuses on using CSET2 and FDO commands. See the MEM:TABL sections of this manual for

additional information. In this example I’ve set up my source for about 0.0dBm. Note that CSET2 or FDO is the

measurement system response. When FDO is enabled the reported value will be the measured value minus the

system response. The table used in this example is “CUSTOM_A”. When selecting a table enclose the name in

double quotes as shown below.

0000282 → *RST

Which table is selected? We want CUSTOM_A but CUSTOM_B was previously selected

0000283 → CORR:CSET2?

0000284 ← CUSTOM_B

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 102

LBSFXX Series True-RMS Power Sensor Programming Guide v1

So we’ll start by selecting CUSTOM_A

0000285 → CORR:CSET2 "CUSTOM_A"

For convenience, setup for quick measurements

0000286 → AVER:COUN:AUTO 0

0000287 → AVER:SDET 0

0000288 → AVER:COUN 10

0000289 → FREQ 1GHZ

What does the CUSTOM_A table look like?

0000290 → MEM:TABL:SEL?

0000291 ← CUSTOM_A

0000292 → MEM:TABL:FREQ?

0000293 ← 1.000000E+09,2.000000E+09,3.000000E+09,4.000000E+09

0000294 → MEM:TABL:GAIN?

0000295 ← 5.000000e+01,1.000000e+02,1.500000e+02,1.000000e+02

Check the state of FDO correction…it should be off and it is

0000296 → CORR:CSET2:STAT?

0000297 ← 0

Make a quick measurement and recheck our frequency…note that this is about -0.001dB

0000298 → READ?

0000299 ← -1.22661803E-03

0000300 → FREQ?

0000301 ← +1.00000000E+09

Check to see how much offset we are applying…should be none (100%) because FDO is disabled

0000302 → CORR:FDOF?

0000303 ← +1.00000000E+02

Now we’ll enable FDO

0000304 → CORR:CSET2:STAT 1

0000305 → CORR:FDOF?

Recheck the current FDO offset (1GHZ). It should correspond to the table above and it does…

0000306 ← +5.00000000E+01

Now make a measurement…should be about 3.01dB and it is

0000307 → READ?

0000308 ← +3.00918434E+00

Change the frequency and make a new measurement…

0000309 → FREQ 2GHZ

0000310 → CORR:FDOF?

0000311 ← +1.00000000E+02

0000312 → READ?

0000313 ← +8.16211979E-02

Do it again (note 150% corresponds to about 1.76dB)…

0000314 → FREQ 3GHZ

0000315 → CORR:FDOF?

0000316 ← +1.50000000E+02

0000317 → READ?

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 103

LBSFXX Series True-RMS Power Sensor Programming Guide v1

0000318 ← -1.75841388E+00

…and again…

0000319 → FREQ 4GHZ

0000320 → CORR:FDOF?

0000321 ← +1.00000000E+02

0000322 → READ?

0000323 ← +1.68819594E-02

Return to 1GHz and recheck with FDO enabled

0000324 → FREQ 1GHZ

0000325 → CORR:FDOF?

0000326 ← +5.00000000E+01

0000327 → READ?

0000328 ← +3.01174029E+00

Disabled FDO and recheck…looks Ok

0000329 → CORR:CSET2:STAT 0

0000330 → READ?

0000331 ← +5.52826404E-04

On Reset

It is important to note that the state of these properties are unaffected by a *RST. In other words, if CSET2 is

enabled before a *RST it will be enabled after a *RST.

Common Error Messages:

If you enable CSET2 (FDO) without a table being selected you’ll get error -221 “Settings Conflict” and of course

CSET2 will remain off. If you try to select a table that isn’t present you’ll get -256, “File name not found”. If your

name contains invalid characters (e.g. “#”) you’ll generate a -224, “Illegal parameter value”.

Finally, the LBSFxx error checks the table upon selection. It does this by comparing the number of frequency

points to the number of gain/loss points. If the count differs this generates a -226, “Lists not the same length”

error.

Other Notes:

The example code in the memory chapter can be helpful in understanding frequency dependent offset tables.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 104

LBSFXX Series True-RMS Power Sensor Programming Guide v1

 [SENSe]:CORRection:DCYCle:STATe

SENSe1:CORRection:DCYCle:STATe

[SENSe]:CORRection:DCYCle[:INPut][:MAGNitude]

SENSe1:CORRection:DCYCle[:INPut][:MAGNitude]

[SENSe]:CORRection:GAIN3:STATe

SENSe1:CORRection: GAIN3:STATe

[SENSe]:CORRection: GAIN3[:INPut][:MAGNitude]

SENSe1:CORRection: GAIN3 [:INPut][:MAGNitude]

Syntax:

Most common forms:
CORR:DCYC <NUMBER>

CORR:DCYC?

CORR:DCYC:STAT?

CORR:DCYC:STAT 0

CORR:DCYC:STAT 1

Long forms (a few):
SENSE:CORRECTION:DCYCLE:INPUT:MAGNITUDE <NUMBER>

SENSE:CORRECTION:DCYCLE:STATE?

SENSE:CORRECTION:DCYCLE:STATE 0

SENSE:CORRECTION:DCYCLE:STATE 1

SENSE:CORRECTION:GAIN3:INPUT:MAGNITUDE <NUMBER>

SENSE:CORRECTION:GAIN3:STATE?

SENSE:CORRECTION:GAIN3:STATE 0

SENSE:CORRECTION:GAIN3:STATE 1

Description:

In this command set, DCYCLE and GAIN3 are synonyms. This command is used to adjust the measured value by

an assumed duty cycle. The duty cycle can take on a value of between 0.001 and 99.999 with PCT as optional

units. So that both 10.01 and 10.01 PCT are acceptable and equivalent.

It is important to note that simply setting the value of duty cycle also enables duty cycle.

To calculate the offset in dB:

dB = 10.0 * log10(value in per cent/100.0)

The default value of 1% results in 20dB of correction. And 50% yields 3.01dB of correction.

Examples:

In this example the power level from the source is set to about 3dBm.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 105

LBSFXX Series True-RMS Power Sensor Programming Guide v1

0000386 → *RST

Setup for quick measurements

0000387 → AVER:COUN:AUTO 0

0000388 → AVER:SDET 0

0000389 → AVER:COUN 10

Check the value of DCYCLE or duty cycle…it is 1 PCT.

0000390 → CORR:DCYC?

0000391 ← +1.000000E+00

Set it to 50.0 or 50 PCT

0000392 → CORR:DCYC 50 PCT

0000393 → CORR:DCYC?

0000394 ← +5.000000E+01

0000395 → CORR:DCYC 50.0

0000396 → CORR:DCYC?

0000397 ← +5.000000E+01

We didn’t enable DCYCLE, yet it appears enabled. This was a result of setting the value

0000398 → CORR:DCYC:STAT?

0000399 ← 1

We’ll turn it off and check the power level..3dB

0000400 → CORR:DCYC:STAT 0

0000401 → READ?

0000402 ← +3.01424083E+00

Turn it on (50% duty cycle) and we get a 3dB increase.

0000403 → CORR:DCYC:STAT 1

0000404 → READ?

0000405 ← +6.02054845E+00

Now we’ll query the sensor for the minimum and maximum allowable values

0000406 → CORR:DCYC? MIN

0000407 ← +1.000000E-03

0000408 → CORR:DCYC? MAX

0000409 ← +9.999900E+01

On Reset

The value is set to 1% and the state is disabled upon *RST.

Common Error Messages:

If you enable the state while MRATE = FAST a -221, “Settings conflict” error is generated. If you set the value of

DCYC with MRATE = FAST, the value will change but the state of duty cycle correction (CORR:DCYC:STAT) will not

be enabled.

Other Notes:

Setting the value of GAIN3 or DCYCLE enables this feature.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 106

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 107

LBSFXX Series True-RMS Power Sensor Programming Guide v1

[SENSe]:CORRection:GAIN2:STATe

SENSe1:CORRection:GAIN2:STATe

[SENSe]:CORRection:GAIN2[:INPut][:MAGNitude]

SENSe1:CORRection:GAIN2[:INPut][:MAGNitude]

Syntax:

Most common forms:
CORR:GAIN2?

CORR:GAIN2? MIN

CORR:GAIN2? MAX

CORR:GAIN2:STAT?

CORR:GAIN2 <VALUE>

CORR:GAIN2:STAT 0

CORR:GAIN2:STAT 1

Long forms (a few):
SENSE:CORRECTION:GAIN2:STATE?

SESNE:CORRECTION:GAIN2:STATE 0

SESNE:CORRECTION:GAIN2:STATE 1

SENSE:CORRECTION:GAIN2?

SESNE:CORRECTION:GAIN2 <VALUE>

Description:

As with many parameters you have the option of setting the value (CORR:GAIN2) and enabling or disabling the

parameter (CORR:GAIN2:STAT). This parameter is allows the user to setup an “general” correction value. This

can be used along with other forms of correction (e.g. FDO, MLP). This parameter is applied by addition. Unlike

FDO where the values entered are the response of the system, this value is the actual correction that is to be

applied to the measured value (by addition). CORR:GAIN2 allows a range -100dB to +100db.

Examples:

In this sequence, -5dB and +5dB of correction is applied and enabled and disabled

0000958 → *RST

Set up for quick measurements…

0000959 → AVER:COUN:AUTO 0

0000960 → AVER:SDET 0

0000961 → AVER:COUN 10

Make a measurement with no correction

0000962 → READ?

0000963 ← +2.99571307E+00

Verify the state of GAIN2 correction

0000964 → CORR:GAIN2:STAT?

0000965 ← 0

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 108

LBSFXX Series True-RMS Power Sensor Programming Guide v1

0000966 → CORR:GAIN2?

0000967 ← +0.000000E+00

Set GAIN2… also enables GAIN2:STAT. When read, the -5dB of correction is apparent.

0000968 → CORR:GAIN2 -5.0

0000969 → READ?

0000970 ← -2.00712283E+00

0000971 → READ?

0000972 ← -2.00735009E+00

You can see that GAIN:STAT has been enabled

0000973 → CORR:GAIN2:STAT?

0000974 ← 1

Change the CORR:GAIN to +5 dB of correction…you can see it works properly

0000975 → CORR:GAIN2 5.0

0000976 → READ?

0000977 ← +7.99374313E+00

0000978 → READ?

0000979 ← +7.99407945E+00

0000980 → READ?

0000981 ← +7.99338090E+00

Turn off or disable CORR:GAIN2 and the power reading shows the uncorrected value

0000982 → CORR:GAIN2:STAT 0

0000983 → READ?

0000984 ← +2.99642488E+00

These commands demonstrate the option of getting MIN and MAX at runtime

0000985 → CORR:GAIN2? MAX

0000986 ← +1.000000E+02

0000987 → CORR:GAIN2? MIN

0000988 ← -1.000000E+02

On Reset

GAIN2 is set to 0.0 and the STATE is disabled.

Common Error Messages:

A -221, “Settings conflict” message is generated when MRAT = FAST

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 109

LBSFXX Series True-RMS Power Sensor Programming Guide v1

SENSe:CORRection:MLPad[:INPut]:STATe

SENSe1:CORRection:MLPad[:INPut]:STATe

Syntax:

Most common forms:
SENS:CORR:MLP:STAT?

SENS:CORR:MLP:STAT 0

SENS:CORR:MLP:STAT 1

Long forms:
SENSE:CORRECTION:MLPAD:INPUT:STATE?

SENSE:CORRECTION:MLPAD:INPUT:STATE 0

SENSE:CORRECTION:MLPAD:INPUT:STATE 1

SENSE1:CORRECTION:MLPAD:INPUT:STATE?

SENSE1:CORRECTION:MLPAD:INPUT:STATE 0

SENSE1:CORRECTION:MLPAD:INPUT:STATE 1

Description:

If enabled, it applies a correction for a 75Ohm to 50 Ohm minimum loss pad correction of 5.719dB. This is the

power lost in the MLP impedance matching devices. The correction is additive.

Examples:

Start with a reset and then setup for fast measurements

0001051 → *RST

0001052 → AVER:COUN:AUTO 0

0001053 → AVER:SDET 0

0001054 → AVER:COUN 10

Make a measurement

0001055 → READ?

0001056 ← +2.98555903E+00

Check the MLP…it’s disabled

0001057 → SENS:CORR:MLP:STATE?

0001058 ← 0

Enable MLP and re-measure. Note the change in the measured value

0001061 → SENS:CORR:MLP:STATE 1

0001062 → READ?

0001063 ← +8.70673521E+00

Reset and note that the MLP was not disabled with a *RST

0001064 → *RST

0001065 → READ?

0001066 ← +8.70707513E+00

0001067 → SENS:CORR:MLP:STATE 0

0001068 → READ?

0001069 ← +2.98864140E+00

On Reset

Be aware that the state of MPL is unchanged by a *RST.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 110

LBSFXX Series True-RMS Power Sensor Programming Guide v1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 111

LBSFXX Series True-RMS Power Sensor Programming Guide v1

[CALC:FEED is automatically set to “POW:AVER ON SWEEP1”

[SENSe]:FREQuency[:CW]

SENSe1:FREQuency[:CW]

[SENSe]:FREQuency[:FIXed]

SENSe1:FREQuency[:FIXed]

Syntax:

Most common forms:
FREQ?

FREQ? MIN

FREQ? MAX

FREQ <NUMBER>

Long forms:
SENSE:FREQUENCY:CW?

SENSE:FREQUENCY:CW? MIN

SENSE:FREQUENCY:CW? MAX

SENSE:FREQUENCY:CW? DEF

SENSE:FREQUENCY:CW <NUMBER>

SENSE1:FREQUENCY:CW? MIN

SENSE1:FREQUENCY:CW? MAX

SENSE1:FREQUENCY:CW? DEF

SENSE1:FREQUENCY:CW <NUMBER>

Note that CW and FIXED are synonyms in this set of commands. So that

SENSE:FREQUENCY:CW? And SENSE:FREQUENCY:FIXED? Are equivalent.

Description:

This is used to set the frequency. This is then used to correct the measured value for the frequency response of

the sensor. Units can be appended to the value. The applicable units are Hz, kHz, MHz and GHz. When frequency

is set the FDO is recalculated and applied to any measurement.

Examples:

What happens with *RST…

0001093 → *RST

0001094 → FREQ?

0001095 ← +5.00000000E+07

Lower case units…

0001096 → FREQ 10ghz

0001097 → FREQ?

0001098 ← +1.00000000E+10

Upper case units

0001099 → FREQ 11GHZ

0001100 → FREQ?

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 112

LBSFXX Series True-RMS Power Sensor Programming Guide v1

0001101 ← +1.10000000E+10

Get the minimum and maximum frequency supported by this sensor

0001102 → FREQ? MIN

0001103 ← +9.00000000E+03

0001104 → FREQ? MAX

0001105 ← +2.65000000E+10

On Reset

A *RST sets frequency to 50MHz.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 113

LBSFXX Series True-RMS Power Sensor Programming Guide v1

[SENSe]:FREQuency[:CW|FIXED]:STARt

SENSe1:FREQuency[:CW|FIXED]:STARt

 [SENSe]:FREQuency[:CW|FIXED]:STOP

SENSe1:FREQuency[:CW|FIXED]:STOP

[SENSe]:FREQuency[:CW|FIXED]:STEP

SENSe1:FREQuency[:CW|FIXED]:STEP

Note: These commands require a trigger. This is often accomplished by using an RF source that frequency steps.

These sources often output a trigger for each frequency step. The trigger must be connected to the trigger input

of the sensor. The sensor synchronizes its measurements to the incoming trigger by making a measurement at

the next specified frequency when a trigger is received.

Syntax:

Most common forms:
FREQ:STAR?

FREQ:STAR? DEF|MIN|MAX

FREQ:STAR <number>

FREQ:STOP?

FREQ:STOP? DEF|MIN|MAX

FREQ:STOP <number>

FREQ:STEP?

FREQ:STEP? DEF|MIN|MAX

FREQ:STEP <number>

Long forms:
SENSE:FREQUENCY:FIXED:START?

SENSE:FREQUENCY:FIXED:STOP?

SENSE:FREQUENCY:FIXED:STEP?

Description:

These commands cause the sensor to make a series of measurements and then deliver this same series of

measurements as a group or buffer. The number of measurements delivered in the buffer is determined by

FREQ:STEP. Two other commands, FREQ:START and FREQ:STOP, set the end points of the sweep.

These commands are very specific in how they operate. It is essential to understand that setting FREQ:STEP to a

positive value (between 1 and 250) will place the sensor in “frequency sweep mode”. To resume average power

measurements you must set FREQ:STEP back to 0 (default value). Finally, each new sweep requires that *OPC

followed by setting FREQ:STEP. The requirement to set FREQ:STEP must be met even if the current value is

identical previous value (see the example below). The sensor firmware uses the setting of *OPC and FREQ:STEP

as a signal that a new sweep should commence.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 114

LBSFXX Series True-RMS Power Sensor Programming Guide v1

Normally, at implementation the start and stop frequencies are known. The variability is normally associated

with the number of steps or interval. Given a specific start and stop and number of steps, an evenly spaced

interval can be calculated as follows:

finterval = (fstop – fstart)/(step – 1)

For example, if the start frequency was 540MHz and the stop frequency was 1GHz and 100 steps were desired

the interval would be (frequencies in MHz):

finterval = (1000 – 540)/(100-1) or 460/99 => 4.646MHz

Notice that the step frequency is rounded to the nearest kHz. This is what the sensor does. Given a specific start

and stop and interval, the number of steps can be calculated as follows:

step = (fstop – fstart + finterval)/(finterval)

Using the example above except this time we’ll use the start, stop and interval we get:

step = (fstop – fstart + finterval)/(finterval) or (1000 – 540 + 4.646)/4.646 => 100

Where:

fstart = the start frequency

fstopt = the stop frequency

fintervalt = the size or interval between steps

step = the number of steps

Examples:

In this example the sensor is swept twice. The first time a complete setup is done. In the next sweep *OPC and

FREQ:STEP are used to repeat the sweep. After this, frequency sweep mode is exited and an average power

measurement is made using immediate triggering. Note that the trigger source is returned to immediate and the

frequency step must be set to 0.

Start from a known state…

0000335 → *RST

Start the setup for the first sweep…we want relatively quick measurement for the demo…

0000336 → AVER:COUN:AUTO 0

0000337 → AVER:SDET 0

0000338 → AVER:COUN 10

Setup for triggering…

0000339 → TRIG:SOUR EXT

0000340 → TRIG:SLOP POS

…and then the start and stop freuqencies

0000341 → FREQ:STAR 500MHZ

0000342 → FREQ:STOP 1000MHZ

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 115

LBSFXX Series True-RMS Power Sensor Programming Guide v1

The sensor must be set to immediately watch for the next trigger…

0000343 → INIT:CONT 1

Set the operation complete bit so *ESR? tells us when the sweep is done…

0000344 → *OPC

…query *ESR until you get a 0…then *ESR? will be watching for us.

0000345 → *ESR?

0000346 ← +1

0000347 → *ESR?

0000348 ← +0

To start the sweep set FREQ:STEP…

0000349 → FREQ:STEP 10

Now that the sweep is started we will repeatedly query *ESR?

0000350 → *ESR?

0000351 ← +0

0000352 → *ESR?

0000353 ← +0

…

…

0000366 → *ESR?

0000367 ← +0

Finally *ESR? tells us the sweep is done by returning a 1

0000368 → *ESR?

0000369 ← +1

Now we’ll get the data

0000370 → FETCH?

0000371 ←

+2.94186480E+00,+2.94203762E+00,+2.94395445E+00,+2.94310356E+00,+2.94242219E+00,+2.94087565E+

00,+2.94188366E+00,+2.94354162E+00,+2.94251383E+00,+2.94232040E+00

Ok, now get the next sweep by setting *OPC…

0000372 → *OPC

…then frequency step

0000373 → FREQ:STEP 10

Now we query *ESR? Until it returns 1

0000374 → *ESR?

0000375 ← +0

0000376 → *ESR?

0000377 ← +0

…

…

0000384 → *ESR?

0000385 ← +0

All done

0000386 → *ESR?

0000387 ← +1

Now we get the data

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 116

LBSFXX Series True-RMS Power Sensor Programming Guide v1

0000388 → FETCH?

0000389 ←

+2.94371970E+00,+2.94248834E+00,+2.94154475E+00,+2.94166740E+00,+2.94263360E+00,+2.94317034E+

00,+2.94361075E+00,+2.94070365E+00,+2.94215700E+00,+2.94503756E+00

Finally, we exit frequency sweep mode and make an average measurement

0000390 → FREQ:STEP 0

0000391 → TRIG:SOUR IMM

0000392 → FETCH?

0000393 ← +2.94474820E+00

On Reset

Common Error Messages:

Other Notes:

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 117

LBSFXX Series True-RMS Power Sensor Programming Guide v1

 [SENSe]:MRATe

SENSe1:MRATe

[SENSe]:SPEed

SENSe1:SPEed

Syntax:

Most common forms:
MRAT NORM

MRAT DOUB

MRAT FAST

MRAT SUP

MRAT?

Long forms:
SENSE:MRATE NORMAL

SENSE:MRATE DOUBLE

SENSE:MRATE FAST

SENSE:MRATE SUPER

SENSE:MRATE?

Description:

The measurement rate or MRAT setting determines the rate of averaging or number of samples per average. As

you move from NORM to DOUB to FAST the number of samples per average decreases. As a result, the number

of completed measurements per second increases. So that if the number of averages is set to 1 (AVER:COUN 1)

then the following applies:

MRATE Maximum readings per
second

Time per
Average

NORMal 20 34 ms

DOUBle 40 17 ms

FAST 400 1.5 ms

SUPer 800 75 us

Higher read rates can be achieved with trigger counts of 50 (using buffers).

Note that the sensor does not allow the number of averages to be set when MRAT = FAST. Trying to set the

number of averages with MRAT = FAST will generate a -221, “Settings confict” error message. To avoid this you

can set MRAT = SUPER. Super is in every way identical to fast except it allows you to set the number of averages.

Note: The SENS:SPEED commands are included here for compatibility purposes only. MRATE is the preferred

command. SENS:SPEED takes (or returns) a numeric parameter. The numeric parameters are 20, 40 and 110.

Examples:

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 118

LBSFXX Series True-RMS Power Sensor Programming Guide v1

These examples were executed in the Interactive IO. Any deviation from the read rates noted above is a result of

software not the sensor. But reasonable approximations of this table can be achieved using the Interactive IO

application.

0001884 → *RST

0001885 → AVER:COUN:AUTO 0

0001886 → AVER:SDET 0

0001887 → AVER:COUN 1

0001888 → MRAT NORM

------- Start Macro [#JUST_READ#]

0001889 → READ?

0001891 ← +2.95001684E+00

------- End Macro [#JUST_READ#]

------- Start Macro [#JUST_READ#]

0001892 → READ?

0001894 ← +2.95477319E+00

------- End Macro [#JUST_READ#]

…

…

…

…

0001939 ← +2.94952262E+00

------- End Macro [#JUST_READ#]

------- Start Macro [#JUST_READ#]

0001940 → READ?

0001942 ← +2.94993072E+00

------- End Macro [#JUST_READ#]

------- Start Macro [#JUST_READ#]

0001943 → READ?

0001945 ← +2.94988765E+00

------- End Macro [#JUST_READ#]

------- Start Macro [#JUST_READ#]

0001946 → READ?

0001948 ← +2.94975026E+00

------- End Macro [#JUST_READ#]

------- #JUST_READ# was repeated 20 times in 1027 ms

On Reset

MRATE is set to NORMAL on reset.

Common Error Messages:

As stated earlier, if you attempt to set the average count with MRATE = FAST you will get a -221, “Settings

conflict” message. If the SPEED command is used and the value of the parameter is not 20, 40 or 110 a -224,

”Illegal parameter” message is generated.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 119

LBSFXX Series True-RMS Power Sensor Programming Guide v1

[SENSe]:POWer:AC:RANGe:AUTO

SENSe1:POWer:AC:RANGe:AUTO

 [SENSe]:POWer:AC:RANGe

SENSe1:POWer:AC:RANGe

Syntax:

Most common forms:
POW:AC:RANG:AUTO?

POW:AC:RANG:AUTO 1

Long forms:
SENSE:POWER:AC:RANGE:AUTO?

SENSE:POWER:AC:RANGE:AUTO 1

SENSE:POWER:AC:RANGE 0

SENSE:POWER:AC:RANGE 1

Description:

POW:AC:RANG is used to select the upper or lower range manually. Control over the selected path could be

valuable when measuring very narrow pulsed signals. The value 0 selects the lower range (less then about -

15dBm) and 1 selects the upper range (greater than about -15dBm). If you select either range

POW:AC:RANGE:AUTO is automatically disabled. You will need to explicitly enable POW:AC:RANG:AUTO (or

issue a *RST) to re-enable this feature.

Examples:

In this measurements are made using each range within its useable range, at its limit and beyond. Finally,

automatic range selection is re-enabled and measurements are repeated.

Start from a known state…

0000105 → *RST

0000106 → POW:AC:RANG:AUTO?

0000107 ← 1

0000108 → POW:AC:RANG?

0000109 ← 1

0000110 → POW:AC:RANG 0

0000111 → POW:AC:RANG:AUTO?

0000112 ← 0

Set source power to 0dBm

0000113 → INIT:CONT?

0000114 ← 0

0000115 → INIT:CONT 1

0000116 → FETCH?

0000117 ← -9.72820365E+00

0000118 → POW:AC:RANG 1

0000119 → FETCH?

0000120 ← -4.56114304E-01

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 120

LBSFXX Series True-RMS Power Sensor Programming Guide v1

Set source power to -30dBm

0000121 → FETCH?

0000122 ← -3.04687767E+01

0000123 → POW:AC:RANG 0

0000124 → FETCH?

0000125 ← -3.04975394E+01

0000126 → POW:AC:RANG 1

0000127 → FETCH?

0000128 ← -3.03713741E+01

Set source power to -40dBm

0000129 → FETCH?

0000130 ← -3.21224785E+01

0000131 → POW:AC:RANG 0

0000132 → FETCH?

0000133 ← -4.05227654E+01

Re-enable AUTO RANGE selection

0000134 → POW:AC:RANG:AUTO 1

Source power is still set to -40dBm

0000135 → FETCH?

0000136 ← -4.05205412E+01

0000137 → FETCH?

0000138 ← -4.05280215E+01

Source power to 0 dBm

0000139 → FETCH?

0000140 ← -4.58481196E-01

0000141 → FETCH?

0000142 ← -4.58466587E-01

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 121

LBSFXX Series True-RMS Power Sensor Programming Guide v1

[SENSe]:TEMPerature?/qonly/

SENSe1:TEMPerature?/qonly/

Syntax:

Most common forms:
TEMP?

Long forms:
SENSE:TEMP?

SENSE1:TEMP?

Description:

Returns the temperature of the sensor in degrees Celsius.

Examples:

0000394 → TEMP?

0000395 ← +3.432300E+01

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 122

LBSFXX Series True-RMS Power Sensor Programming Guide v1

Service

Service is a collection of commands that don’t have a direct bearing on measurements. Never the less, these

functions are widely used. These commands are often used in systems where some relationship between the

device under test and the equipment being used must be recorded.

These commands include setting or getting the last calibration date, the sensors serial number, firmware version

etc. It also supports a number of functions related to the capabilities of the sensor including maximum power

and frequency.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 123

LBSFXX Series True-RMS Power Sensor Programming Guide v1

SERVice:BIST:TRIGger:LEVel:STATe?/qonly/

Syntax:

Most common forms:
SERV:BIST:TRIG:LEV:STAT?

Long forms:
SERVICE:BIST:TRIGGER:LEVEL:STATE?

Description:

Returns a 0 when external trigger in is low or 1 external trigger in is high. External trigger is an SMB connector

labeled TI on the back of the sensor.

 Examples:

In this example a 1Hz, 5V square wave has been connected to trigger in port. This causes the return value to

switch between 0 and 1 depending on when the command was sent relative to the square wave.

0000090 → *RST

0000091 → SERV:BIST:TRIG:LEV:STAT?

0000092 ← 1

0000093 → SERV:BIST:TRIG:LEV:STAT?

0000094 ← 0

0000095 → SERV:BIST:TRIG:LEV:STAT?

0000096 ← 1

0000097 → SERV:BIST:TRIG:LEV:STAT?

0000098 ← 0

0000099 → SERV:BIST:TRIG:LEV:STAT?

0000100 ← 1

0000101 → SERV:BIST:TRIG:LEV:STAT?

0000102 ← 1

0000103 → SERV:BIST:TRIG:LEV:STAT?

0000104 ← 0

0000105 → SERV:BIST:TRIG:LEV:STAT?

0000106 ← 1

0000107 → SERV:BIST:TRIG:LEV:STAT?

0000108 ← 0

0000109 → SERV:BIST:TRIG:LEV:STAT?

0000110 ← 1

0000111 → SERV:BIST:TRIG:LEV:STAT?

0000112 ← 0

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 124

LBSFXX Series True-RMS Power Sensor Programming Guide v1

SERVice:OPTion/qonly/

Syntax:

Most common forms:
SERV:OPT?

Long forms:
SERVICE:OPTION?

Description:

This returns a list of options that are installed and enabled on the sensor in question.

Examples:

In this example the sensor has options 001 and 003 installed and enabled. Also, the return value indicates the

connector which in this case is 3.5mm male.

0000113 → SERV:OPT?

0000114 ← "001,003,35M"

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 125

LBSFXX Series True-RMS Power Sensor Programming Guide v1

SERVice:SECure:ERASe/nquery/

Syntax:

Most common forms:
SERV:SEC:ERAS

SERV:SEC:ERAS FAST

Long forms:
SERVICE:SECURE:ERASE

SERVICE:SECURE:ERASE FAST

Description:

“Secure erase” allows the user to clear all relevant non-volatile memory. It includes save/recall registers,

frequency dependent offset tables, user calibration correction, state information and a number of other items.

The user may clear the data with or without the FAST parameter. In short, any parameter or value the user can

set, directly or indirectly, is cleared in the following manner:

28. “FAST” mode

o All bytes are set to 0x00

29. Normal mode

o All bytes are set to 0xFF

o All bytes are set to a random number between 0x00 and 0xFF inclusive

o All bytes are set to 0x00

Other Notes:

There are a range of motivations for employing this command. One motivation is to place the sensor in a known,

factory-like original state. Any single pass clearing of the data would meet the need. So, the command

SERV:SEC:ERAS FAST would be sufficient. The FAST parameter serves to speed up this process considerably.

A second motivation might be to clear the sensors of sensitive data for securing reasons. In this case, clearly the

one pass FAST erase is insufficient. To satisfy this need, simply execute the SERV:SEC:ERAS several times with no

parameters. For example, if you are required to obliterate the data in 32 passes, simply repeat the command 32

times. If you need 64 passes then repeat the command 64 times. Each pass will take between 7-15 seconds.

One final note, the random numbers used are generated using an “analog entropy source” or, analog noise

sources in the microprocessor.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 126

LBSFXX Series True-RMS Power Sensor Programming Guide v1

SERVice:SENSor:CDATe?/qonly/

SERVice:SENSor1:CDATe?/qonly/

Syntax:

Most common forms:
SERV:SENS:CDAT?

Long forms:
SERIVCE:SENSOR:CDATE?

SERIVCE:SENSOR1:CDATE?

Description:

Returns the date of calibration in the form of Year, Month, Day

Examples:

In this example the date of calibration is August 8, 2016

0000117 → SERV:SENS:CDAT?

0000118 ← 2018,8,6

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 127

LBSFXX Series True-RMS Power Sensor Programming Guide v1

SERVice:SENSor:CDUEdate

SERVice:SENSor1:CDUEdate

Syntax:

Most common forms:
SERV:SENS:CDUE?

SERV:SENS:CDUE <YEAR>,<Month>,<DAY>

Long forms:
SERVICE:SENSE:CDUEDATE?

SERVICE:SENSE1:CDUEDATE?

SERVICE:SENSE:CDUEDATE <YEAR>,<Month>,<DAY>

SERVICE:SENSE1:CDUEDATE <YEAR>,<Month>,<DAY>

Description:

This command either sets or returns the current calibration due date as stored in non-volatile memory. The

year, month, day must be enclosed in quotes (“) as shown in the example. Note, the parameters are not range

checked.

Examples:

In this example the date is queried, then set, queried again the cleared and queried once again.

0000161 → *RST

0000162 → SERV:SENS:CDUE?

0000163 ← NONE

0000164 → SERV:SENS:CDUE "2020,6,15"

0000165 → SERV:SENS:CDUE?

0000166 ← 2020,6,15

0000167 → SERV:SENS:CDUE ""

0000168 → SERV:SENS:CDUE?

0000169 ← NONE

Common Error Messages:

If the surrounding quotes are omitted then error -148, “Character data not allowed” is issued.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 128

LBSFXX Series True-RMS Power Sensor Programming Guide v1

SERVice:SENSor:CPLace

SERVice:SENSor1:CPLace

Syntax:

Most common forms:
SERV:SENS:CPL?

SERV:SENS:CPL <string>

Long forms:
SERVICE:SENSE:CPLACE?

SERVICE:SENSE:CPLACE <string>

Description:

This returns the place of calibration. The calibration place must in in quotes as shown in the example. To clear

the place of calibration supply the command is a quoted null string as shown in the example.

Examples:

In this example the calibration place is queried, then set to Boise, ID, queried again, cleared and queried once

more. Note that the string must be in quotes as shown below.

0000178 → SERV:SENS:CPL?

0000179 ← NONE

0000180 → SERV:SENS:CPL "Boise, ID"

0000181 → SERV:SENS:CPL?

0000182 ← Boise, ID

0000183 → SERV:SENS:CPL ""

0000184 → SERV:SENS:CPL?

0000185 ← NONE

Common Error Messages:

If the surrounding quotes are omitted then error -148, “Character data not allowed” is issued.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 129

LBSFXX Series True-RMS Power Sensor Programming Guide v1

SERVice:SENSor:FREQuency:MAXimum?/qonly/

SERVice:SENSor1:FREQuency:MAXimum?/qonly/

SERVice:SENSor:FREQuency:MINimum?/qonly/

SERVice:SENSor1:FREQuency:MINimum?/qonly/

Syntax:

Most common forms:
SERV:SENS:FREQ:MAX?

SERV:SENS:FREQ:MIN?

Long forms:
SERVICE:SENSOR:FREQUENCY:MAXIMUM?

SERVICE:SENSOR1:FREQUENCY:MAXIMUM?

SERVICE:SENSOR:FREQUENCY:MINUMUM?

SERVICE:SENSOR1:FREQUENCY: MINUMUM?

Description:

As you might expect, these commands return the maximum and minimum operating frequency of the sensor.

Examples:

In the example below, we are querying an LBSF09

I 0000189 → SERV:SENS:FREQ:MAX?

0000190 ← +9.00000000E+10

0000191 → SERV:SENS:FREQ:MIN?

0000192 ← +4.00000000E+03

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 130

LBSFXX Series True-RMS Power Sensor Programming Guide v1

SERVice:SENSor:POWer:AVERage:MAXimum?/qonly/

SERVice:SENSor1:POWer:AVERage:MAXimum?/qonly/

Syntax:

Most common forms:
SERV:SENS:POW:AVER:MAX?

Long forms:
SERVICE:SENSOR:POWER:AVERAGE:MAXIMUM?

Description:

This command returns the maximum calibrated power for the sensor.

Examples:

0000193 → SERV:SENS:POW:AVER:MAX?

0000194 ← +2.600000E+01

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 131

LBSFXX Series True-RMS Power Sensor Programming Guide v1

SERVice:SENSor:POWer:PEAK:MAXimum?/qonly/

SERVice:SENSor1:POWer:PEAK:MAXimum?/qonly/

Syntax:

Most common forms:
SERV:SENS:POW:PEAK:MAX?

Long forms:
SERVICE:SENSOR:POWER:PEAK:MAXIMUM?

SERVICE:SENSOR1:POWER:PEAK:MAXIMUM?

Description:

This command returns the maximum peak power. The peak power specification is both power and time limited.

So, measuring peak power requires that you comply with both the peak power limitation and the time/duty

cycle limits of this specification.

Examples:

0000201 → SERV:SENS:POW:PEAK:MAX?

0000202 ← +3.300000E+01

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 132

LBSFXX Series True-RMS Power Sensor Programming Guide v1

SERVice:SENSor:POWer:USABle:MAXimum?/qonly/

SERVice:SENSor1:POWer:USABle:MAXimum?/qonly/

SERVice:SENSor:POWer:USABle:MINimum?/qonly/

SERVice:SENSor1:POWer:USABle:MINimum?/qonly/

Syntax:

Most common forms:
SERV:SENS:POWER:USAB:MAX?

SERV:SENS:POWER:USAB:MIN?

Long forms:
SERVICE:SENSOR:POWER:USABLE:MAXIMUM?

SERVICE:SENSOR:POWER:USABLE:MINIMUM?

SERVICE:SENSOR1:POWER:USABLE:MAXIMUM?

SERVICE:SENSOR1:POWER:USABLE:MINIMUM?

Description:

This returns the maximum and minimum usable specified power.

Examples:

0000203 → SERV:SENS:POW:USAB:MAX?

0000204 ← +2.600000E+01

0000205 → SERV:SENS:POW:USAB:MIN?

0000206 ← -6.000000E+01

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 133

LBSFXX Series True-RMS Power Sensor Programming Guide v1

SERVice:SENSor:RADC?/qonly/

SERVice:SENSor1:RADC?/qonly/

Syntax:

Most common forms:
SERV:SENS:RADC?

Long forms:
SERVICE:SENSOR:RADC?

SERVICE:SENSOR1:RADC?

Description:

This returns the ADC values of the two paths. The first number is the value of the least sensitive path. The

second number is the most sensitive path.

Examples:

0000207 → SERV:SENS:RADC?

0000208 ← 39214,59706

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 134

LBSFXX Series True-RMS Power Sensor Programming Guide v1

SERVice:SENSor:SNUMber?/qonly/

SERVice:SENSor1:SNUMber?/qonly/

Syntax:

Most common forms:
SERV:SENS:SNUM?

Long forms:
SERVICE:SENSOR:SNUMBER?

SERVICE:SENSOR1:SNUMBER?

Description:

This returns the factory serial number of the sensor.

Examples:

In this case the returned serial number is 177464. That you match the serial number on the rear bulkhead of the

instrument.

0000209 → SERV:SENS:SNUM?

0000210 ← 177464

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 135

LBSFXX Series True-RMS Power Sensor Programming Guide v1

SERVice:SENSor:TNUMber

SERVice:SENSor1:TNUMber

Syntax:

Most common forms:
SERV:SENS:TNUM?

SERV:SENS:TNUM <string>

Long forms:
SERVICE:SENSOR:TNUMBER?

SERVICE:SENSOR:TNUMBER <string>

SERVICE:SENSOR1:TNUMBER?

SERVICE:SENSOR1:TNUMBER <string>

Description:

This command allows the user to set and recall the tracking number for their own purposes.

Examples:

In the example below the tracking number is first queried. However, it is not set so “NONE” is returned. Then we

attempt to improperly set the tracking number. Notice error message -148. We omitted the quotes. Then we

reset the command with the quotes added. Finally we checked it and then set it back to a null string.

0000211 → SERV:SENS:TNUM?

0000212 ← NONE

0000213 → SERV:SENS:TNUM 123456789

0000214 → SYST:ERR?

0000215 ← -148,"Character data not allowed"

0000216 → SERV:SENS:TNUM "123456789"

0000217 → SERV:SENS:TNUM?

0000218 ← 123456789

0000219 → SERV:SENS:TNUM ""

0000220 → SERV:SENS:TNUM?

0000221 ← NONE

Common Error Messages:

As shown in the example, the most common error that might occur is because the quote marks are omitted. The

forces error -148,”Character data not allowed”

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 136

LBSFXX Series True-RMS Power Sensor Programming Guide v1

SERVice:SENSor:TYPE?/qonly/

SERVice:SENSor1:TYPE?/qonly/

Syntax:

Most common forms:
SERV:SENS:TYPE?

Long forms:
SERVICE:SENSOR:TYPE?

SERVICE:SENSOR1:TYPE?

Description:

This queries the sensors model number.

Examples:

0000222 → SERV:SENS:TYPE?

0000223 ← LBSF09A

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 137

LBSFXX Series True-RMS Power Sensor Programming Guide v1

SERVice:VERSion:PROCessor?/qonly/

Syntax:

Most common forms:
SERV:VERS:PROC?

Long forms:
SERVICE:VERSION:PROCESSOR?

Description:

This returns information about the sensor and its construction. If you call for support you are likely to be asked

for this return string.

Examples:

0000224 → SERV:VERS:PROC?

0000225 ←

CPU=20016419,RF=0008,USB=0027,NAND=0FFF,DC=0359,UPT=0273824446,INT=2108311039,2E=0000000000,2

0E=0000000000

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 138

LBSFXX Series True-RMS Power Sensor Programming Guide v1

SERVice:VERSion:SYSTem:DFU/nquery/

Syntax:

Most common forms:
SERV:VERS:SYST:DFU

Long forms:
SERVICE:VERS:SYSTEM:DFU

Description:

This places the sensor into a state that allows for firmware upgrades. When this command is issued the sensor

will be seen as a new type of device and the LED on the rear panel will start to blink alternating between green

and red.

You will lose the ability to communicate with it except through the upgrade application. To restore the sensor to

normal operation without upgrading, simply unplug and then plug in the USB cable on the sensor. This will

restore the sensor to its normal state.

Examples:

0000226 → SERV:VERS:SYST:DFU

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 139

LBSFXX Series True-RMS Power Sensor Programming Guide v1

SERVice:VERSion:SYSTem?/qonly/

Syntax:

Most common forms:
SERV:VERS:SYST?

Long forms:
SERVICE:VERSION:SYSTEM?

Description:

This returns the firmware version of the sensor.

Examples:

0000229 → SERV:VERS:SYST?

0000230 ← 0.99.242_20190611_1132_s_ma

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 140

LBSFXX Series True-RMS Power Sensor Programming Guide v1

Status

The status commands can be used to monitor the state of the sensor. However, the explanation of Status

information may, for many, be overly complex. This is especially true when compared to actual use. Typically,

simply read the status byte. Occasionally, systems use the lower limit and upper limit fail registers.

In any case, the arrangement or structure of the status registers is as follows:

Base status registers Intermediate status registers Status Byte

This means that each base register feeds an intermediate register. Each intermediate register feeds a bit in the
status byte.

In the LBSFxx sensors, each BASE register is 16 bits long but only one bit is used. The used bit used in the BASE
registers is always bit 1. Sometimes it is said that the base register bits are ORed together before being used to
set a bit in an intermediate registers. Again, there is only one active bit in base registers. Stating the base
register bits are ORed together is a bit pretentious (pun intended).

Some Intermediate registers receive the ORed values from base registers. Other intermediate registers do not
receive ORed values from base registers. Instead they have their own bits. In any case, the intermediate register
bits are ORed together and the result is used to set specific bits in the Status Byte. In short, each intermediate
register can set or clear 1 Status Byte bit.

The table below summarizes this arrangement.

Base Registers Intermediate Registers Status Byte

Name Bit Bit Name Bit

(no base registers)

 (unused) 0

3 Device Status 1

 Error Event Queue 2

Questionable POWer Summary 1 3
Questionable Status 3

Questionable CALibration Summary 1 8

(no base registers)

 Output Queue 4

0..7 Standard Event 5

1..5, 7 Status Byte 6

Operation CALibrating Summary 1 0

Operation Status 7

Operation MEASuing Summary 1 4

Operation TRIGger Summary 1 5

Operation SENSe Summary 1 10

Operation Lower Limit Fail Summary 1 11

Operation Upper Limit Fail Summary 1 12

Table 1 Status Registers

The table is read left to right. But an example makes it easy to interpret.

Example #1: Base register Questionable POWer Summary, bit 1, and base register Questionable CALibration

Summary, bit 1, feed intermediate register Questionable Status, bits 3 and 8 respectively. The ORed value of

intermediate register Questionable Status bits 3 and 8, are in turn used to set bit 3 of the Status Byte. That’s it.

Example #2: Intermediate register, Device Status is not fed by any base register. However, the ORed value of

intermediate register Device Status, bit 3, sets Status Byte, bit 1.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 141

LBSFXX Series True-RMS Power Sensor Programming Guide v1

Example #3: The ORed value of the intermediate register Standard Event bits 0...7 are used to set Status Byte

bit 5.

Up to this point we’ve treated the registers as simple devices. But in fact the status registers are a bit more

complex.

In reality, each status register is composed of multiple layers. Each layer feeds the next. These layers (in order)

are as follows:

 The current value or condition register – This register is updated real time. Conceptually, this is what has

been discussed in this section up to this point. The current value is passed to its associated transition filter.

 Transition filter – This layer controls which changes in the condition register are passed to its associated

Event register.

o Positive transition – if a particular bit in the condition register changes from 0 to 1 this is considered

a positive transition

o Negative transition – if a particular bit in the condition register changes from 1 to 0 this is

considered a negative transition

 Event register - This layer latches any Transition filter changes clear to set. Once a bit is set it remains set

until it is cleared by a *CLS command. The contents of the event register are then passed through the

associated enable mask.

 Enable – This layer is simply a binary mask. The Enable mask passes bits from the Event register to the

associated Summary.

 Summary – This register ORs of all of the bits sent to it by the enable register. This ORed value (a 0 or 1) is

the output or value of the Summary. This value is in turn passed to a single status register bit. So, if any bit in

the Event register is set: and the Enable mask has enabled these bits: the Summary will set its associated bit

in the Status Byte.

The purpose of all this is to “capture” changes in sensor status and report information asynchronously. To the

extent that a programmer is required to monitor, analyze and report this status information, these functions

may be useful. To satisfy such a requirement without filters, event registers and so on, would require the

programmer constant polling. This logic allows the user set up filters, and masks. And then monitor the Status

Byte as time permits.

Once the status byte reports a value of interest the programmer can interrogate the remaining registers to

determine the nature of the fault. And the programmer can be confident in the fact that all such events have

been captured. This asynchronous process is possible because all enabled Events are latched until cleared by a

*CLS.

The following status commands are covered as a group because of their association with this explanation and

their similarity in form.

Note: Individual users will determine the value of this information. Many (if not most) programmers eschew

this capability and simply monitor the status byte. This is the status byte is often sufficient for their

purposes. One exception might be the LLF and ULF summary registers.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 142

LBSFXX Series True-RMS Power Sensor Programming Guide v1

Base Register Command Prefix

Questionable POWer Summary STATus:QUEStionable:POWer[:SUMMary]:

Questionable CALibration Summary STATus:QUEStionable:CALibration[:SUMMary]:

Operation CALibrating Summary STATus:OPERation:CALibrating[:SUMMary]:

Operation MEASuing Summary STATus:OPERation:MEASuring[:SUMMary]:

Operation TRIGger Summary STATus:OPERation:TRIGger[:SUMMary]:

Operation SENSe Summary STATus:OPERation:SENSe[:SUMMary]:

Operation Lower Limit Fail Summary STATus:OPERation:LLFail[:SUMMary]:

Operation Upper Limit Fail Summary STATus:OPERation:ULFail[:SUMMary]:

To complete a command append one of the following suffixes:

 CONDition?/qonly/ - queries the current state of the register

 ENABle – enables or disables selected bits

 NTRasition – sets up or queries the negative transition mask

 PTRansition – sets up or queries the positive transition mask

 EVENt?/qonly/- queries the event status

So to query the POWer summary registers current state (condition) you would append the associated command

prefix with the condition query suffix:

STATus:QUEStionable:POWer[:SUMMary]: + Condition?/qonly/

…yielding

STAT:QUES:POW:SUMM:COND?

…or

STAT:QUES:POW:COND? (SUMM is optional)

From the intereactive IO application it would look like this:

0000001 → STAT:QUES:POW:COND?

0000002 ← +0

To determine if any events have occurred in the Operation Lower Limit Fail Summary you would send the

following query (from InteractiveIO):

0000005 → STAT:OPER:LLF:EVEN?

0000006 ← +0

And to examine the negative transition (NTR) mask then examine and set the positive transition (PTR) mask of

the same register:

0000011 → STAT:OPER:LLF:NTR?

0000012 ← +0

0000013 → STAT:OPER:LLF:PTR?

0000014 ← +32767

0000015 → STAT:OPER:LLF:PTR 0

0000016 → STAT:OPER:LLF:PTR?

0000017 ← +0

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 143

LBSFXX Series True-RMS Power Sensor Programming Guide v1

0000018 → STAT:OPER:LLF:PTR +32767

0000019 → STAT:OPER:LLF:PTR?

0000020 ← +32767

The intermediate and status registers are much the same in that they use a prefix and the same suffixes.

Intermediate and Status Registers Command Prefix

Device Status STATus:DEVice:

Questionable Status STATus:QUEStionable:

Operation Status STATus:OPERation:

And, just as with the base status registers, completing the command is accomplished by appending one of the

following suffixes:

 CONDition?/qonly/

 ENABle

 NTRasition

 PTRansition

 EVENt?/qonly/

By way of example (again from the interactive IO application):

0000035 → STAT:DEV:COND?

0000036 ← +0

0000037 → STAT:DEV:NTR?

0000038 ← +0

0000039 → STAT:DEV:PTR?

0000040 ← +8

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 144

LBSFXX Series True-RMS Power Sensor Programming Guide v1

STATus:PRESet/nquery/

Syntax:

Most common forms:
STAT:PRES

Long forms:
STATUS:PRESET

Description:

This command sets certain register filters to their preset or power on values. This command should not be

confused with *RST. For all status registers, the PTR (positive transition) filters are always set to all 1s. And all

NTR (negative transition) filters are set to 0. Note that, regardless of the following information, bit 15 is always

set to 0.

Finally, all of the ENABle masks for all status registers are set to all 1s except for the ENABle masks for the the

OPERational and QUEStionalbe. In these cases they ENABle masks are set to 0. The default or preset state of

these masks are why most programmers find the STATUS BYTE sufficient to determine the status of the sensor.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 145

LBSFXX Series True-RMS Power Sensor Programming Guide v1

System

The system commands provide commands to query, control or configure the sensor in a general sense.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 146

LBSFXX Series True-RMS Power Sensor Programming Guide v1

SYSTem:BLINk/nquery/

SYSTem:BLINk1/nquery/

Syntax:

Most common forms:
BLINK

Long forms:
SYSTEM:BLINK

SYSTEM:BLINK1

Description:

Issuing this command causes the LED on the rear bulkhead to blink bright green once. The bright green color can

be hard to see of the LED is bright red.

Examples:

0000254 → BLINK

Other Notes:

The most common uses for this command, is to show that you’re communicating with the sensor. If there are

multiple sensors it can be useful in differentiating between the sensors.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 147

LBSFXX Series True-RMS Power Sensor Programming Guide v1

SYSTem:COMMunicate:SPI:CLOCk

Syntax:

Most common forms:
SYST:COMM:SPI:CLOC <0|1|2|3>

SYST:COMM:SPI:CLOC?

Long forms:
SYSTEM:COMMUNICATION:SPI:CLOCk <0|1|2|3>

SYSTEM:COMMUNICATION:SPI:CLOCk?

Description:

This command defines the phase relationship between the SPI clock line and the SPI data line, allowing users to

align the sensor with existing systems. It uses the standard 4-mode SPI clock phase numbering convention. For

further details, refer to the LadyBug Option SPI guide.

Important Notes:

- Factory default setting: 3 (described below)

- The LBSFxxx power sensor operates as a slave on the SPI buss.

- The maximum clock rate is 1MHz.

- The clock mode setting is stored in non-volatile memory and is not affected by CONF, *RST, SYST:PRES.

- If the sensor is equipped with Option MIL (which disables non-volatile memory), the clock mode setting

is fixed at the factory default of 3 and cannot be modified.

- Executing a Secure Erase (Option SEC) will reset the sensor's clock mode to the factory default setting.

SYST:COMM:SPI:CLOC Clock Polarity Clock Phase

0 Low (Idle=0) 0 (1’st edge)

1 Low (Idle=0) 1 (2’nd edge)

2 High (Idle=1) 0 (1’st edge)

3 High (Idle=1) 1 (2’nd edge)

SPI Clock Phase Diagram

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 148

LBSFXX Series True-RMS Power Sensor Programming Guide v1

SYSTem:COMMunicate:USB:ADDRess

Syntax:

Most common forms:
SYST:COMM:USB:ADDR <0…127>

SYST:COMM:USB:ADDR?

Long forms:
SYSTEM:COMMUNICATE:USB:ADDRESS <0..127>

SYSTEM:COMMUNICATE:USB:ADDRESS ?

Description:

Allows the user to set/get a value between 0…127 inclusive. It is not otherwise used by the sensor.

Examples:

This demonstrates setting and getting the variable. The highlighted area demonstrates the error condition.

0000309 → SYST:COMM:USB:ADDR?

0000310 ← +0

0000311 → SYST:COMM:USB:ADDR 10

0000312 → SYST:COMM:USB:ADDR?

0000313 ← +10

0000314 → SYST:COMM:USB:ADDR 127

0000315 → SYST:COMM:USB:ADDR?

0000316 ← +127

0000317 → SYST:COMM:USB:ADDR 128

0000318 → SYST:ERR?

0000319 ← -222,"Data out of range"

0000320 → SYST:COMM:USB:ADDR 0

0000321 → SYST:COMM:USB:ADDR?

0000322 ← +0

On Reset

This value is unaffected by *RST

Common Error Messages:

The most common error message will be the error message generate by going out of range as shown above.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 149

LBSFXX Series True-RMS Power Sensor Programming Guide v1

SYSTem:COMMunicate:USB:INTerface

Syntax:

Most common forms:
SYST:COMM:USB:INT?

SYST:COMM:USB:INT [USBTMC|USBHID]

Long forms:
SYSTem:COMMunicate:USB:INTerface?

SYSTem:COMMunicate:USB:INTerface [USBTMC|USBHID]

Important Notes:

- Factory Default Condition: USBHID

- New USB Class takes effect after power is cycled

Description:

The LBSFxxx series of USB power sensors support both USBTMC and USB HID interface classes. This command

allows the user to configure and query the USB interface class. USB HID mode is used by LadyBug Windows

software.

Configuring SYST:COMM:USB:INT to USBTMC disables USB HID mode and enables USBTMC mode, which will

make LadyBug’s Interactive IO software un-accessible. Similarly, reverting from USBTMC back to USB HID mode

will disable connectivity with the USBTMC Interactive IO.

Important: Before sending this command, ensure that your system is prepared to communicate using the new

interface class setting. If the system is not configured for the new interface class, communication with the device

will be lost, and the power sensor may require a reset.

USB Class Reset

To reset the interface to the factory default USB HID class

 Using an Interactive IO program with USBTMC

o Send the command SYST:COMM:USB:INT USBHID

 If an Interactive IO program with USBTMC is not available.

o Connect the sensor for at least 5 seconds

o Unplug and reconnect the sensor’s USB connector three times within approximately 4 seconds.

Ensure the sensor’s LED illuminates green before each disconnection.

o On the 3’rd reconnection, the sensor’s LED will illuminate red, then green. The sensor is now

temporarily in USB HID mode.

o Open LadyBug’s Interactive IO program and send the command SYST:COMM:USB:INT USBHID to

save the mode to non-volatile memory.

Note: If the sensor is disconnected prior to using LadyBug’s Interactive IO to change the mode, the reset process

will need to be repeated.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 150

LBSFXX Series True-RMS Power Sensor Programming Guide v1

SYSTem:ERRor?/qonly/

Syntax:

Most common forms:
ERR?

SYST:ERR?

Long forms:
SYSTEM:ERROR?

Description:

This command returns the next error in the error queue. If there are no errors to return then a message

indicating no error is returned. Anytime there are errors in the queue, the LED on the rear bulkhead is bright

red.

Examples:

This sequence starts with an empty error queue and a series of queries showing what an empty error queue

looks like. Finally, an error is induced. In this case READ? times out because INIT:CONT is enabled. Then we

query the instrument and see an error message is present.

0000012 → SYST:ERR?

0000013 ← +0,"No error"

0000014 → SYSTEM:ERROR?

0000015 ← +0,"No error"

0000016 → ERR?

0000017 ← +0,"No error"

0000018 → INIT:CONT?

0000019 ← 1

0000020 → READ?

0000021 ← timed out

0000022 → SYST:ERR?

0000023 ← -213,"Init ignored"

On Reset

The error queue is NOT cleaned out after a *RST or SYST:PRES.

Other Notes:

Issue a *CLS command to clear the error queue.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 151

LBSFXX Series True-RMS Power Sensor Programming Guide v1

SYSTem:HELP:HEADers?/qonly/

Syntax:

Most common forms:
SYST:HELP:HEAD?

Long forms:
SYSTEM:HELP:HEADERS?

Description:

This command returns a list of the SCPI commands. The commands are the same strings that have been used to

create the headers in this document. The string returned is an arbitrary data block (as defined in IEEE 488.2). The

format of the arbitrary data block is as follows:

30. In general the form is #Xyyy..dddddd<LF>

31. The block starts with a “#”

32. The “#” is followed by a single ASCII character. This will be referred to as X. This ASCII character must be

one of the following ASCII characters 1,2,3,4,5,6,7,8,9. In particular, it cannot be a letter, nor can it be a

special character, nor can it be zero (“0”).

33. #X is followed by a string of ASCII characters. The individual characters in this string are represented

with a y. Each of the y characters must be one of the following ASCII characters: 0,1,2,3,4,5,6,7,8,9. The

number of y characters is X in length. So that if X=3 then there will be three ys. If X=7, then there will be

seven ys as shown in this string:
o #72345689

o # = start of return string

o 7 = X

o 2345689 = yyyyyyy (note that there are seven ys)

34. The sequence of ys are grouped together and interpreted as a single number. We’ll refer to the numeric

value represented by the ASCII collection of ys as Y. By way of example, the following uses this string:

o #32154892079…

In this case X=3 (highlighted in green), yyy (highlighted in magenta) is 215. The ASCII value represented

by yyy is 215. So that Y is 215. Y is the length of the data block that follows yyy. So that in this case the

returned data begins with “4892079” and continues on for a total of 214 characters followed by a <LF>

or line feed. This makes the total character count it 215 which is what we expect. Note that #3215 is not

included in the count of 215 but the trailing <LF> is counted in the 215.

Assume a command returned this string:

#228This is just a silly string<LF>

#220Another demo string<LF>

#16Hello<LF>

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 152

LBSFXX Series True-RMS Power Sensor Programming Guide v1

In the first case X=2, yy = 28. This means Y = 28. So Y tells us that the data block (highlighted in grey) is

28 characters long. Note that <LF> is a common representation for a single line feed character whose

decimal value is 10. In the second case X=2, yy = 20. This means Y = 20. So Y tells us that the data block

(highlighted in grey) is 20 characters long. In the third case X=1, y = 6. This means Y = 6. So Y tells us that

the data block (highlighted in grey), in this case “Hello<LF>” is 6 characters long.

35. In our examples we have assumed the data block is composed of ASCII characters. But the data in the

data block could just as easily be binary data (as in traces).

Examples:

In this example we demonstrate SYST:HELP:HEAD?

0000010 → SYST:HELP:HEAD?

0000011 ← #511121

:ABORt/nquery/

:ABORt1/nquery/

:CALCulate:FEED

:CALCulate:FEED1

:CALCu…..

…

…

…

…

…

…

*IDN?/qonly/

*OPC

*OPT?/qonly/

*RCL/nquery/

*RST/nquery/

*SAV/nquery/

*SRE

*STB?/qonly/

*TRG/nquery/

*TST?/qonly/

*WAI/nquery/

You can see that X=5, yyyyy = 11121 so that Y is 11121 bytes long. If you copy and paste this string into

Notepad++ (or other Word processor) you might see that the length of the reported string is longer that Y

indicates. This is a result of several things:

36. Most word processors will try to format the text and in so doing will add a <CR> and or a <LF> at the end

of each line

37. With some processors additional “hidden” characters are added

38. You’ve copied the sent command or other extraneous text

39. You’re counting the “#511121” portion of the returned string

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 153

LBSFXX Series True-RMS Power Sensor Programming Guide v1

DIAG:BOOT:COLD/nquery/

Syntax:

Most common forms:
DIAG:BOOT:COLD

Long forms:
DIAG:BOOT:COLD

Description:

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 154

LBSFXX Series True-RMS Power Sensor Programming Guide v1

SYSTem:PRESet/nquery/

Syntax:

Most common forms:
SYST:PRES

Long forms:
SYSTEM:PRESET

Description:

Other than INIT:CONT (detailed below), SYST:PRES (System preset) is equivalent to the IEEE 488.2 command

*RST.

Example: 0000005 → SYST:PRES

NOTE: *RST settings are identical to SYST:PRES DEF except *RST sets the following:

Set continuous initiation (*RST Sets to off) INIT:CONT Off

SYST:PRES DEF command sets the following:

Description Equivalent command Setting

Set the trigger source TRIG:SOUR Imm

Set averaging (Note: Automatic averaging will change tis if it remains on) SENS:SVER:COUN 4

Set automatic averaging SENS:AVER:COUN Auto

Set averaging status SENS:AVER:STAT On

Turn on step detection SENS:AVER:SDET On

Set continuous initiation (SYST:PRES Sets to on) INIT:CONT On

Turn on automatic trigger delay (relates to the external trigger if used) TRIG:DEL:AUTO On

Set trigger delay (Delay after the trigger event to measurement start) TRIG:DEL 0

Set automatic trigger delay (AKA settling time delay) TRIG:DEL:AUTO On

Set trigger hold-off TRIG:HOLD 0

Set external trigger slope TRIG:SLOP POS

Set the number of trigger events per measurement cycle TRIG:COUN 1

The power measurement units UNIT:POW dBm

Set measurement type CALC:FEED POW:AVER

Clear limit data at initiation CALC:LIM:CLE:AUTO On

Lower limit CALC:LIM:LOW -90dBm

Limit Checking CALC:LIM:STAT Off

Upper limit CALC:LIM:UPP +90dBm

Math expression CALC:MATH “(Sens1)”

Binary order FORM:BOARD normal

Data format FORM ascii

Channel offset status SENS:CORR:GAIN2:STAT Off

Channel offset value SENS:CORR:GAIN2 0 dB

Measurement frequency (Note: depends upon the model) SENS:FREQ -

Measurement rate setting SENS:MRAT NORM

Measurement range SENS:POW:AC:RANG upper

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 155

LBSFXX Series True-RMS Power Sensor Programming Guide v1

Auto range status SENS:POW:AC:RANG:AUTO On

SYSTem:VERSion?/qonly/

Syntax:

Most common forms:
SYST:VERS?

Long forms:
SYSTEM:VERSION?

Description:

This command returns the version of SCPI used in the LBSFxx sensors. Examples:

0000001 → SYST:VERS?

0000002 ← "2006.1"

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 156

LBSFXX Series True-RMS Power Sensor Programming Guide v1

Trigger

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 157

LBSFXX Series True-RMS Power Sensor Programming Guide v1

TRIGger:DELay:AUTO

TRIGger1:DELay:AUTO

TRIGger[:SEQuence]:DELay:AUTO

TRIGger:SEQuence1:DELay:AUTO

Syntax:

Most common forms:
TRIG:DEL:AUTO?

TRIG:DEL:AUTO [0|1]

Long forms:
TRIGGER:DELAY:AUTO?

TRIGGER:DELAY:AUTO [0|1]

TRIGGER1:SEQUENCE1:DELAY:AUTO?

Description:

This enables or disables the automatic settling time algorithm in the sensor. In some cases (large power level

changes) additional time may be required. Even with this feature enabled, if you wish to ensure the

measurement is settled to your liking take and compare two back to back readings. If this feature is disabled the

sensor begins measurements as soon as a trigger occurs.

Examples:

In this example the automatic trigger delay is enabled and disabled.

0000053 → *RST

0000054 → TRIG:DEL:AUTO?

0000055 ← 1

0000056 → TRIG:DEL:AUTO 0

0000057 → TRIG:DEL:AUTO?

0000058 ← 0

0000059 → TRIG:DEL:AUTO 1

0000060 → TRIG:DEL:AUTO?

0000061 ← 1

On Reset:

As shown in the example, TRIG:DEL:AUTO is enabled with the sensor is *RST

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 158

LBSFXX Series True-RMS Power Sensor Programming Guide v1

TRIGger[:IMMediate]

TRIGger1[:IMMediate]/nquery/

TRIGger[:SEQuence]:IMMediate/nquery/

TRIGger:SEQuence1:IMMediate/nquery/

This command is the same as INIT, INIT:IMM or INITIATE:IMMEDIATE. Please consult the INIT:IMMEDIATE

command elsewhere in the manual.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 159

LBSFXX Series True-RMS Power Sensor Programming Guide v1

TRIGger[:SEQuence]:COUNt

TRIGger:SEQuence1:COUNt

Syntax:

Most common forms:
TRIG:COUN?

TRIG:COUN <number>

Long forms:
TRIGGER:SEQUENCE:COUNT?

TRIGGER:SEQUENCY:COUNT <number>

Description:

This is used to get a series of measurements (1-50) in a very short time period. To use trigger count the sensor

must be in free run (INIT:CONT = 1) and MRAT = FAST or SUPer. With MRAT in fast you are restricted to 1

average. If MRAT = SUP you can set the averaging. However, a group of measurements will take longer (because

averaging will be applied to each measurement). Trigger count can be set from 1 to 50. The default value of

TRIG:COUN = 1. If TRIG:COUN is greater than 1 and you set MRAT to anything other than FAST or SUP you’ll

generate a -221,”Settings conflict” error message. Finally, in this mode you’ll use FETCH? to retrieve the

measure values. Each time FETCH? is called new values are returned.

Examples:

In this example we use trigger count with MRAT = FAST and SUP. Setting TRIG:COUN to 1 when MRAT is set to

NORM or DOUB is also demonstrated.

0000065 → *RST

0000066 → INIT:CONT 1

0000067 → MRAT FAST

Take 5 measurements

0000068 → TRIG:COUN 5

0000069 → FETCH?

0000070 ← -7.35443947E+01,-7.48911388E+01,-7.47946415E+01,-7.54379048E+01,-7.42985568E+01

0000071 → FETCH?

0000072 ← -7.24080734E+01,-6.70442087E+01,-6.39921714E+01,-6.49239257E+01,-7.25393731E+01

0000073 → FETCH?

0000074 ← -6.03682284E+01,-6.17204047E+01,-6.90643411E+01,-7.33756753E+01,-7.27013575E+01

Take 25 measurements

0000075 → TRIG:COUN 25

0000076 → FETCH?

0000077 ← -7.29191367E+01,-7.44701710E+01,-7.52893055E+01,-7.45513153E+01,-7.22251496E+01,-

7.20036427E+01,-7.31956406E+01,-6.83442754E+01,-6.40323521E+01,-6.86150444E+01,-

7.19510663E+01,-7.17784388E+01,-7.14157007E+01,-7.01503679E+01,-7.20639699E+01,-

6.83238684E+01,-6.92899976E+01,-6.64262832E+01,-6.82780003E+01,-6.65846408E+01,-

6.51137256E+01,-6.53830441E+01,-7.14434742E+01,-6.71367839E+01,-6.41970447E+01

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 160

LBSFXX Series True-RMS Power Sensor Programming Guide v1

0000078 → FETCH?

0000079 ← -6.27615498E+01,-6.32740443E+01,-7.14917086E+01,-7.40471500E+01,-7.35028169E+01,-

7.43737523E+01,-7.37897553E+01,-7.01428597E+01,-7.30247388E+01,-7.49765855E+01,-

7.56000669E+01,-7.29210676E+01,-6.93758311E+01,-6.91521323E+01,-6.32603145E+01,-

6.03508988E+01,-5.99164785E+01,-6.21363357E+01,-6.88567995E+01,-7.25752253E+01,-

6.46710806E+01,-6.14748912E+01,-6.07040792E+01,-6.25539551E+01,-7.08493321E+01

Demonstrate the automatic setting of TRIG:COUN to 1 when entering MRAT = NORM, DOUB

0000080 → TRIG:COUN?

0000081 ← +25

0000082 → MRAT NORM

0000083 → FETCH?

0000084 ← -6.60257398E+01

0000085 → TRIG:COUN?

0000086 ← +1

0000087 → TRIG:COUN?

0000088 ← +1

0000089 → MRAT FAST

0000090 → TRIG:COUN 25

0000091 → TRIG:COUN?

0000092 ← +25

0000093 → MRAT DOUB

0000094 → TRIG:COUN?

0000095 ← +1

Demonstrate using MRAT SUPER with averaging enabled and set

0000096 → MRAT SUP

0000097 → TRIG:COUN 25

0000098 → AVER:COUN 1

0000099 → FETCH?

0000100 ← -6.74649564E+01,-7.04888926E+01,-7.18685634E+01,-7.30780375E+01,-7.38256239E+01,-

7.32865064E+01,-7.14980760E+01,-7.19042443E+01,-7.29505223E+01,-7.24571208E+01,-

7.28574115E+01,-7.33785127E+01,-7.30421127E+01,-6.69614439E+01,-6.33718800E+01,-

6.55794058E+01,-6.95728846E+01,-7.11227133E+01,-7.26417679E+01,-7.35419244E+01,-

7.22315382E+01,-7.00012812E+01,-6.97223095E+01,-7.05828003E+01,-6.99339710E+01

Increase AVERL:COUN… measurement took longer because of the increased averaging.

0000101 → AVER:COUN 20

0000102 → FETCH?

0000103 ← -6.08579985E+01,-6.30138628E+01,-6.03772131E+01,-7.22413889E+01,-6.26971233E+01,-

6.42394105E+01,-7.00969250E+01,-6.15620482E+01,-6.04158772E+01,-6.11781545E+01,-

6.30169957E+01,-6.50615501E+01,-6.62549224E+01,-6.46924124E+01,-6.86386605E+01,-

7.10452634E+01,-7.24810440E+01,-7.28060714E+01,-6.85563579E+01,-6.14815571E+01,-

6.01117589E+01,-5.98852302E+01,-6.53155626E+01,-6.53447041E+01,-6.40082301E+01

On Reset:

TRIG:COUN = 1

Error Messages:

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 161

LBSFXX Series True-RMS Power Sensor Programming Guide v1

When MRAT is NORM or DOUB and you attempt to set the trigger count to any value other than 1 a -

221,”Settings conflict” error message will be generated.

Notes:

When MRAT is set to NORMAL or DOUBLE while TRIG:COUN > 1, TRIG:COUN is set to 1.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 162

LBSFXX Series True-RMS Power Sensor Programming Guide v1

TRIGger[:SEQuence]:DELay

TRIGger:SEQuence1:DELay

Syntax:

Most common forms:
TRIG:DEL? [DEF|MIN|MAX]

TRIG:DEL <number>

Long forms:
TRIGGER:SEQUENCE:DELAY? [DEF|MIN|MAX]

TRIGGER:SEQUENCE:DELAY <number>

Description:

This sets the trigger delay or the time between the trigger event and the beginning of a measurement. This time

may be between 0 and 10 seconds. The default value is 0 seconds. Delay time is resolved to 1usec.

Examples:

In this example the delay time is queried and set:

0000041 → *RST

0000042 → TRIG:DEL? DEF

0000043 ← +0.000000E+00

0000044 → TRIG:DEL?

0000045 ← +0.000000E+00

0000046 → TRIG:DEL? MIN

0000047 ← 0.000000E+00

0000048 → TRIG:DEL? MAX

0000049 ← +1.000000E+01

0000050 → TRIG:DEL 0.2

0000051 → TRIG:DEL?

0000052 ← +2.000000E-01

On Reset:

The trigger delay is set to 0 upon receiving a *RST command.

Notes:

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 163

LBSFXX Series True-RMS Power Sensor Programming Guide v1

TRIGger[:SEQuence]:HOLDoff

TRIGger:SEQuence1:HOLDoff

Syntax:

Most common forms:
TRIG:HOLD? [MIN,MAX,DEF]

TRIG:HOLD <numeric>

Long forms:
TRIGGER:SEQUENCE:HOLDOFF? [MIN|MAX|DEF]

TRIGGER:SEQUENCE:HOLDOFF <numeric>

Description:

This command prevents another trigger from occurring for a set period of time (between 1us to 400ms

inclusive). One use of this command is to prevent unwanted triggers to occur. This can be very helpful with noisy

or non-repeating signals.

Examples:

0000104 → TRIG:HOLD? MIN

0000105 ← +1.000000E-06

0000106 → TRIG:HOLD? MAX

0000107 ← +4.000000E-01

0000108 → TRIG:HOLD? DEF

0000109 ← +1.000000E-06

0000110 → TRIG:HOLD?

0000111 ← +1.000000E-06

0000112 → TRIG:HOLD 0.1

0000113 → TRIG:HOLD?

0000114 ← +1.000000E-01

On Reset:

TRIG:HOLD = 1usec (minimum time).

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 164

LBSFXX Series True-RMS Power Sensor Programming Guide v1

TRIGger[:SEQuence]:SLOPe

TRIGger:SEQuence1:SLOPe

Syntax:

Most common forms:
TRIG:SLOP?

TRIG:SLOP [NEG|POS]

Long forms:
TRIGGER:SEQUENCE:SLOPE?

TRIGGER:SEQUENCE:SLOPE [NEG|POS]

Description:

Trigger slope is used only when the TRIG:SOUR = EXT. If the value is POS then the trigger will occur on the rising

edge. If the value is NEG then the trigger will occur on a falling edge.

Examples:

0000254 → *RST

0000257 → TRIG:SLOP?

0000258 ← POS

0000259 → TRIG:SLOP NEG

0000260 → TRIG:SLOP POS

On Reset:

On *RST the value is set to POS

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 165

LBSFXX Series True-RMS Power Sensor Programming Guide v1

TRIGger:SOURce

TRIGger[1]:SOURce

TRIGger[:SEQuence]:SOURce

TRIGger:SEQuence1:SOURce

Syntax:

Most common forms:
TRIG:SOUR?

TRIG:SOUR [IMM|EXT|HOLD|BUS]

TRIG:SOUR

Long forms:
TRIGGER:SEQUENCE:SOURCE?

TRIGGER:SEQUENCY:SOURCE [IMM|EXT|HOLD|BUS]

Description:

This command sets (or queries) the current trigger source. While this command determines the source of the

trigger it does not necessarily place the sensor in a state to respond to the trigger. The INIT command will do this

unless INIT:CONT is true.

Trigger Source Notes

IMMediate This causes the trigger system to always be enabled. If INIT:CONT = True then the
sensor continuously generates INIT command or triggers causing the sensor to be in
free run. The sensor returns to the idle state upon completing a measurement (of
course if INIT:CONT = True then another measurement is initiated.

EXTernal The TTL compatible trigger and the Trigger In port is used to generate the INIT. If no
trigger appears then no measurement occurs. This could be the source of timeouts.

HOLD Causes triggering to be disabled or suspended unless TRIG:IMM is used

BUS Waits for a *TRG SCPI command

Examples:

In this example the trigger source is set to IMM and EXT.

0000015 → *RST

0000016 → TRIG:SOUR?

0000017 ← IMM

0000018 → TRIG:SOUR EXT

0000019 → TRIG:SOUR?

0000020 ← EXT

0000029 → SYST:ERR?

0000030 ← +0,"No error"

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 166

LBSFXX Series True-RMS Power Sensor Programming Guide v1

On Reset:

The trigger source is set to IMM upon *RST.

Common Error Messages:

 If the trigger source is set to EXT with MRAT = FAST a -221,”Setting conflict” error will be generated.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 167

LBSFXX Series True-RMS Power Sensor Programming Guide v1

Unit

The units command sets the units of the returned value.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 168

LBSFXX Series True-RMS Power Sensor Programming Guide v1

UNIT:POWer

UNIT1:POWer

Syntax:

Most common forms:
UNIT:POW < DBM|W >

UNIT:POW?

Long forms:
UNIT:POWER < DBM|W>

UNIT:POWER?

Description:

These commands sets or gets the measurement units to DBM or W (Watts).

Example:

This sequence sets and gets the units to Watts and DBM. It also demonstrates the effect on measurements. The

power level from the source was set to -10dBm. Note that when units are set to W a value of 9.26… E-05 is

returned. This is about 92.6microWatts or about -10.33dBm. Just as shown in the sequence.

0000054 → *RST

0000055 → UNIT:POW?

0000056 ← DBM

0000057 → UNIT:POWER?

0000058 ← DBM

0000059 → UNIT:POWER W

0000060 → UNIT:POWER?

0000061 ← W

0000062 → READ?

0000063 ← +9.26046559E-05

0000064 → UNIT:POW DBM

0000065 → READ?

0000066 ← -1.03342328E+01

On Reset

The units are set to DBM on reset

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 169

LBSFXX Series True-RMS Power Sensor Programming Guide v1

Standard SCPI commands

These commands are the IEEE 488.2 commands that are supported by the LBSFxx. These commands are

supported by most USBTMC compatible instruments.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 170

LBSFXX Series True-RMS Power Sensor Programming Guide v1

*CLS/nquery/

Syntax:

Most common forms:
*CLS

Long forms:
*CLS

Description:

This command clears all status information including:

 SCPI registers

 Standard event register

 Status byte

 Error message queue

Examples:

This example first tests to ensure that no error is present and the status byte is 0. Then a deliberate error is

made. The status byte is read showing that, in this case, an error is present in the error queue. Then *CLS is

executed and the status byte and error messages are read. Of course the *CLS should clear the status byte and

error message queue.

0000158 → *STB?

0000159 ← +0

0000160 → SYST:ERR?

0000161 ← +0,"No error"

0000162 → FREQ QERQWER force an error state

0000163 → *STB?

0000164 ← +4 we’ve got a non-zero status byte

0000165 → SYST:ERR?

0000166 ← -224,"Illegal parameter value" we’ve got an error message

0000167 → FREQ QERQWER force the error again

0000168 → *STB?

0000169 ← +4 we’ve got a non-zero status byte

0000170 → *STB?

0000171 ← +4

0000172 → *STB?

0000173 ← +4

0000174 → *CLS now we’ll clear the status byte…

0000175 → *STB? …sure enough it is cleared

0000176 ← +0

0000177 → SYST:ERR? and the message queue is cleared

0000178 ← +0,"No error"

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 171

LBSFXX Series True-RMS Power Sensor Programming Guide v1

*ESE

Syntax:

Most common forms:

*ESE <0..7>

*ESE?

Long forms:

*ESE <0..7>

*ESE?

Description:

This command sets or gets the Standard Event Status Enable Register. This register is used to mask the output

of Standard Event Status Register bits that are, in turn, logically or’ed together. The result the logical or is used

to set or clear bit 5 of the Status Register byte (*STB?).

Bit Weight Meaning

0 1 Operation complete

1 2 Request control (not used)

2 4 Query error

3 8 Device dependent error

4 16 Execution error

5 32 Command error

6 64 Not used

7 128 Power on

Examples:

In the following sequence we repeatedly check, change and check the value of the event status register enable.

0000680 → *ESE?

0000681 ← +0

0000682 → *ESE 1

0000683 → *ESE?

0000684 ← +1

0000685 → *ESE 255

0000686 → *ESE?

0000687 ← +255

0000688 → *ESE 0

0000689 → *ESE?

0000690 ← +0

On Reset

The ESE register is cleared on a power on. It is unaffected by *RST.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 172

LBSFXX Series True-RMS Power Sensor Programming Guide v1

*ESR?/qonly/

Syntax:

Most common forms:
*ESR?

Long forms:
*ESR?

Description:

This command returns the contents of the Standard Event Status Register. Once it is read, the register is

cleared. The meaning of the individual bits are as follows:

Bit Weight Meaning

0 1 Operation complete

1 2 Request control (not used)

2 4 Query error

3 8 Device dependent error

4 16 Execution error

5 32 Command error

6 64 Not used

7 128 Power on

Examples:

This is an example of reading the Standard Event Status Register shortly after powered up. Note that the first

returned value indicates “Power On + Operation Complete.” After being read the register is cleared.

0000703 → *ESR?

0000704 ← +129

0000705 → *ESR?

0000706 ← +0

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 173

LBSFXX Series True-RMS Power Sensor Programming Guide v1

*IDN?/qonly/

Syntax:

Most common forms:
*IDN?

Long forms:
*IDN?

Description:

This command requests the sensors identity. Specifically it requests the manufacturer, model number, serial

number and firmware revision.

Examples:

In this example the sensor responds to a *IDN? command.

0000214 → *IDN?

0000215 ← LadyBug Technologies LLC,LB5926L,177464,0.99.242

The manufacturer is: LadyBug Technologies LLC

The model is: LB5926L

The serial number is: 177464

The firmware version is: 0.99.242

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 174

LBSFXX Series True-RMS Power Sensor Programming Guide v1

*OPC

Syntax:

Most common forms:
*OPC

*OPC?

Long forms:
*OPC

*OPC?

Description:

*OPC causes the sensor to set the operation complete bit in the Standard Event Status register when all pending

operations are complete. The query returns a 1 when all pending operations are complete.

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 175

LBSFXX Series True-RMS Power Sensor Programming Guide v1

*OPT?/qonly/

Syntax:

Most common forms:
*OPT?

Long forms:
*OPT?

Description:

This command returns the option information for the sensor. See the example below.

Examples:

In the following example the sensor indicates that that it has options 001, 003 and a 3.5mm connector installed.

0000290 → *OPT?

0000291 ← "001,003,35M"

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 176

LBSFXX Series True-RMS Power Sensor Programming Guide v1

*RCL/nquery/

Syntax:

Command form:

*RCL <NRf>

Description:

The command recalls a previously saved sensor state from the specified register. The recalled state then

becomes the current sensor state. A state must have been previously saved to the specified register otherwise

an error will result. Note that the registers are 1 based (1…10) for this command and the *SAV command.

Examples:

0000085 → *RCL 1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 177

LBSFXX Series True-RMS Power Sensor Programming Guide v1

*RST/nquery/

Syntax:

Most common forms:
*RST

Long forms:
*RST

Description:

This command causes the sensor to reset itself. Note that this changes the state of the sensor to its default

state. However, errors are note cleared. For details on the reset values, refer to the SUST:PRES command.

Examples:

0000280 → *RST

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 178

LBSFXX Series True-RMS Power Sensor Programming Guide v1

*SAV/nquery/

Syntax:

Command form:
*SAV <NRf>

Description:

This command saves the current state of the sensor in the specified register. Note that the registers are 1 based

(1…10) for this command and the *RCL command.

Example:

The following sequence saves the current state in register 1.

0000072 → *SAV 1

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 179

LBSFXX Series True-RMS Power Sensor Programming Guide v1

*SRE

Syntax:

Most common forms:
*SRE <0…255>

*SRE?

Long forms:
*SRE <0…255>

*SRE?

Description:

The values passed in the *SRE command are floats or integer. The value (if required) is rounded to an integer

value. This command reports or controls the enable mask for the Service Request Register bits. This command

either sets or gets the Service Request Enable register. The Service Request Enable register bits are as follows:

Bit Weight Meaning

0 1 Not used

1 2 Not used

2 4 Device dependent

3 8 QUEStionable Status Summary

4 16 Message available

5 32 Event Status But

6 64 Not used

7 128 OPERation Status Summary

The Status Register Enable may take on any value of between 0..255 inclusive.

The value is the sum of the enabled bits. If a 1 occupies any position in the Service Request Enable register then

that bit is enabled in the Status Byte Register. If a 0 occupies any position in the Service Request Enable register

then that bit is disabled in the Status Byte Register.

For instance, if the Status Request Enable register value is set to a value of 20 (only bits 2 and 4 are set) then

Device dependent and Message available events will be made available to the status register as they occur.

Examples:

In this simple example the value is set to 20 and then checked.

0000404 → *SRE?

0000405 ← +0

0000406 → *SRE 20

0000407 → *SRE?

0000408 ← +20

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 180

LBSFXX Series True-RMS Power Sensor Programming Guide v1

On Reset

The value is set to 0.

Common Error Messages:

Other Notes:

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 181

LBSFXX Series True-RMS Power Sensor Programming Guide v1

*STB?/qonly/

Syntax:

Most common forms:
*STB?

Long forms:
*STB?

Description:

This command returns a single byte summarizing the status information of the sensor. Each bit in the eight byte

summary reports a particular status (or is unused). The meaning of each bit is shown in the following table:

Bit Weight Interpretation

0 1 Not used

1 2 Device dependent or specific status

0 – A device specific status condition has occurred

1 – A device specific status condition has occurred

2 4 Error/Event queue

0 – Queue is empty

1 – Queue is not empty

3 8 Questionable status

0 – A questionable status condition has not occurred

1 – A questionable status condition has occurred

4 16 Message available

0 – A message is not available

1 – A message is available

5 32 Event status bit

0 – a status event or condition has not occurred

1 – a status event or condition has occurred

6 64 Master summary status

0 – LBSFxxx is not requesting service

1 – LBSFxxx is requesting service

7 128 Operation status summary

0 – No operation status conditions have occurred

1 – One or more operation status conditions have occurred

Examples:

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 182

LBSFXX Series True-RMS Power Sensor Programming Guide v1

0000003 → *STB?

0000004 ← +0

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 183

LBSFXX Series True-RMS Power Sensor Programming Guide v1

*TRG/nquery/

Syntax:

Most common forms:
*TRG

Long forms:
*TRG

Description:

This command triggers the LBSFxx sensor if it is waiting for a trigger.

Common Error Messages:

 If TRIGger[1]:SOURce is not set to BUS error -211 “Trigger ignored” error is generated

 If the sensor is not waiting for a trigger then -211 “Trigger ignored” is generated

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 184

LBSFXX Series True-RMS Power Sensor Programming Guide v1

*TST?/qonly/

Syntax:

Most common forms:
*TST?

Long forms:
*TST?

Description:

This command causes the LBSFxxx to run a self-test. The result of the self-test is returned. If the return value = 0

then no fault was found. If the return value ≠ 0 or it is 1 then a fault was found. This command requires

more than 20 seconds to complete.

Examples:

0000277 → *TST?

0000278 ← 0

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 185

LBSFXX Series True-RMS Power Sensor Programming Guide v1

*WAI/nquery/

Syntax:

Most common forms:
*WAI

Long forms:
*WAI

Description:

This command causes the sensor to wait for one of the following:

 All pending operations complete

 Device clear is received

 Power is cycled

LBSFXX Series True-RMS Power Sensor Programming Guide v1
 186

LBSFXX Series True-RMS Power Sensor Programming Guide v1

DCL

This is the device clear command. When a DCL is issued to these sensors:

 All pending operations are halted and the instrument is placed in an idle mode

 The parser is reset

 The return/measurement output buffer is cleared

	Theory of Operation
	Introduction to the SCPI Language
	Allowable characters:
	Command structure:
	Command
	Parameters

	Command Conventions

	Basic Power Measurements
	Default Condition
	Measurement Strategies
	Measurement examples
	Free Run Mode (INIT:CONT=1)
	Single Initiation Mode (INIT:CONT=0)

	Interface Information
	LBSFxx Programming Reference
	Measurement Commands
	CONFigure[1]?
	CONFigure[1] or CONFigure[1][:SCALar][:POWer:AC]
	FETCh[1]?or FETCh[1][:SCALar][:POWer:AC]?
	MEASure[1]? or MEASure[1] [:SCALar][:POWer:AC]?
	READ[1]? or READ[[1] [:SCALar][:POWer:AC]?

	Calculate Commands
	CALC:FEED[?] or CALCulate[1]:FEED[?]
	CALC:MATH[?]or CALCulate[1]:MATH:EXPRession[?]
	CALC:MATH:CAT? or CALCulate:MATH:EXPRession:CATalog?
	CALC:LIM:CLEar:AUTO[?] or CALCulate[1]:LIMit:CLEar:AUTO{?}
	CALC:LIM:CLE[?] or CALCulate[1]:LIMit:CLEar[:IMMediate][?]
	CALC:LIM:FAIL? or CALCulate[1]:LIMit:FAIL?
	CALC:LIM:FCO? or CALCulate[1]:LIMit:FCOunt?
	CALC:LIM:LOW[?] or :CALCulate[1]:LIMit:LOWer[:DATA][?]
	CALC:LIM:STAT[?] or CALCulate[1]:LIMit:STATe[?]
	CALC:LIM:UPP[?] or CALCulate[1]:LIMit:UPPer:DATA[?]

	Calibration
	CAL:ZERO:AUTO or CALibration1:ZERO:AUTO
	CAL:ZERO:TYPE or CALibration1:ZERO:TYPE
	CAL or CALibration1[:ALL]

	Format
	FORMat[:READings]:BORDer
	FORMat[:READings][:DATA]

	Initiate
	INITiate:CONTinuous
	INITiate1:CONTinuous
	INITiate:CONTinuous:ALL
	INITiate1:CONTinuous:ALL
	INITiate:CONTinuous:SEQuence
	INITiate1:CONTinuous:SEQuence
	INITiate:CONTinuous:SEQuence1
	INITiate1:CONTinuous:SEQuence1
	INITiate[:IMMediate]/nquery/
	INITiate1[:IMMediate]/nquery/
	INITiate[:IMMediate]:ALL/nquery/
	INITiate1[:IMMediate]:ALL/nquery/
	INITiate[:IMMediate]:SEQuence/nquery/
	INITiate1[:IMMediate]:SEQuence/nquery/
	INITiate[:IMMediate]:SEQuence1/nquery/
	INITiate1[:IMMediate]:SEQuence1/nquery/

	Input
	INPut:TRIGger:IMPedance

	Memory
	MEMory:CATalog:STATe?/qonly/
	MEMory:CATalog:TABLe?/qonly/
	MEMory:CATalog[:ALL]?/qonly/
	MEMory:CLEar:TABLe/nquery/
	MEMory:CLEar[:NAME]/nquery/
	MEMory:FREE:STATe?/qonly/
	MEMory:FREE:TABLe?/qonly/
	MEMory:FREE[:ALL]?/qonly/
	MEMory:NSTates?/qonly/
	MEMory:STATe:CATalog?/qonly/
	MEMory:STATe:DEFine
	MEMory:TABLe:FREQuency
	MEMory:TABLe:FREQuency:POINts?/qonly/
	MEMory:TABLe:GAIN[:MAGNitude]
	MEMory:TABLe:GAIN[:MAGNitude]:POINts?/qonly/
	MEMory:TABLe:MOVE/nquery/
	MEMory:TABLe:SELect

	Output
	OUTPut:RECorder:FEED
	OUTPut:RECorder1:FEED
	OUTPut:RECorder:FILTer
	OUTPut:RECorder1:FILTer
	OUTPut:RECorder:LIMit:LOWer
	OUTPut:RECorder1:LIMit:LOWer
	OUTPut:RECorder:LIMit:UPPer
	OUTPut:RECorder1:LIMit:UPPer
	OUTPut:RECorder:STATe
	OUTPut:RECorder1:STATe
	OUTPut:TRIGger:SLOPe
	OUTPut:TRIGger[:STATe]

	Sense
	Averaging Commands Overview
	[SENSe]:AVERage:COUNt
	SENSe1:AVERage:COUNt
	[SENSe]:AVERage:COUNt:AUTO
	SENSe1:AVERage:COUNt:AUTO
	[SENSe]:AVERage:SDETect
	SENSe1:AVERage:SDETect
	[SENSe]:AVERage[:STATe]
	SENSe1:AVERage[:STATe]
	[SENSe]:BUFFer:COUNt
	SENSe1:BUFFer:COUNt
	[SENSe]:CORRection:CSET2:STATe
	SENSe1:CORRection:CSET2:STATe
	[SENSe]:CORRection:CSET2[:SELect]
	SENSe1:CORRection:CSET2[:SELect]
	[SENSe]:CORRection:FDOFfset[:INPut][:MAGNitude]?/qonly/
	SENSe1:CORRection:FDOFfset[:INPut][:MAGNitude]?/qonly/
	[SENSe]:CORRection:GAIN4[:INPut][:MAGNitude]?/qonly/
	SENSe1:CORRection:GAIN4[:INPut][:MAGNitude]?/qonly/
	[SENSe]:CORRection:DCYCle:STATe
	SENSe1:CORRection:DCYCle:STATe
	[SENSe]:CORRection:DCYCle[:INPut][:MAGNitude]
	SENSe1:CORRection:DCYCle[:INPut][:MAGNitude]
	[SENSe]:CORRection:GAIN3:STATe
	SENSe1:CORRection: GAIN3:STATe
	[SENSe]:CORRection: GAIN3[:INPut][:MAGNitude]
	SENSe1:CORRection: GAIN3 [:INPut][:MAGNitude]
	[SENSe]:CORRection:GAIN2:STATe
	SENSe1:CORRection:GAIN2:STATe
	[SENSe]:CORRection:GAIN2[:INPut][:MAGNitude]
	SENSe1:CORRection:GAIN2[:INPut][:MAGNitude]
	SENSe:CORRection:MLPad[:INPut]:STATe
	SENSe1:CORRection:MLPad[:INPut]:STATe
	[CALC:FEED is automatically set to “POW:AVER ON SWEEP1”
	[SENSe]:FREQuency[:CW]
	SENSe1:FREQuency[:CW]
	[SENSe]:FREQuency[:FIXed]
	SENSe1:FREQuency[:FIXed]
	[SENSe]:FREQuency[:CW|FIXED]:STARt
	SENSe1:FREQuency[:CW|FIXED]:STARt
	[SENSe]:FREQuency[:CW|FIXED]:STOP
	SENSe1:FREQuency[:CW|FIXED]:STOP
	[SENSe]:FREQuency[:CW|FIXED]:STEP
	SENSe1:FREQuency[:CW|FIXED]:STEP
	[SENSe]:MRATe
	SENSe1:MRATe
	[SENSe]:SPEed
	SENSe1:SPEed
	[SENSe]:POWer:AC:RANGe:AUTO
	SENSe1:POWer:AC:RANGe:AUTO
	[SENSe]:POWer:AC:RANGe
	SENSe1:POWer:AC:RANGe
	[SENSe]:TEMPerature?/qonly/
	SENSe1:TEMPerature?/qonly/

	Service
	SERVice:BIST:TRIGger:LEVel:STATe?/qonly/
	SERVice:OPTion/qonly/
	SERVice:SECure:ERASe/nquery/
	SERVice:SENSor:CDATe?/qonly/
	SERVice:SENSor1:CDATe?/qonly/
	SERVice:SENSor:CDUEdate
	SERVice:SENSor1:CDUEdate
	SERVice:SENSor:CPLace
	SERVice:SENSor1:CPLace
	SERVice:SENSor:FREQuency:MAXimum?/qonly/
	SERVice:SENSor1:FREQuency:MAXimum?/qonly/
	SERVice:SENSor:FREQuency:MINimum?/qonly/
	SERVice:SENSor1:FREQuency:MINimum?/qonly/
	SERVice:SENSor:POWer:AVERage:MAXimum?/qonly/
	SERVice:SENSor1:POWer:AVERage:MAXimum?/qonly/
	SERVice:SENSor:POWer:PEAK:MAXimum?/qonly/
	SERVice:SENSor1:POWer:PEAK:MAXimum?/qonly/
	SERVice:SENSor:POWer:USABle:MAXimum?/qonly/
	SERVice:SENSor1:POWer:USABle:MAXimum?/qonly/
	SERVice:SENSor:POWer:USABle:MINimum?/qonly/
	SERVice:SENSor1:POWer:USABle:MINimum?/qonly/
	SERVice:SENSor:RADC?/qonly/
	SERVice:SENSor1:RADC?/qonly/
	SERVice:SENSor:SNUMber?/qonly/
	SERVice:SENSor1:SNUMber?/qonly/
	SERVice:SENSor:TNUMber
	SERVice:SENSor1:TNUMber
	SERVice:SENSor:TYPE?/qonly/
	SERVice:SENSor1:TYPE?/qonly/
	SERVice:VERSion:PROCessor?/qonly/
	SERVice:VERSion:SYSTem:DFU/nquery/
	SERVice:VERSion:SYSTem?/qonly/

	Status
	STATus:PRESet/nquery/

	System
	SYSTem:BLINk/nquery/
	SYSTem:BLINk1/nquery/
	SYSTem:COMMunicate:SPI:CLOCk
	SYSTem:COMMunicate:USB:ADDRess
	SYSTem:COMMunicate:USB:INTerface
	USB Class Reset

	SYSTem:ERRor?/qonly/
	SYSTem:HELP:HEADers?/qonly/
	DIAG:BOOT:COLD/nquery/
	SYSTem:PRESet/nquery/
	SYSTem:VERSion?/qonly/

	Trigger
	TRIGger:DELay:AUTO
	TRIGger1:DELay:AUTO
	TRIGger[:SEQuence]:DELay:AUTO
	TRIGger:SEQuence1:DELay:AUTO
	TRIGger[:IMMediate]
	TRIGger1[:IMMediate]/nquery/
	TRIGger[:SEQuence]:IMMediate/nquery/
	TRIGger:SEQuence1:IMMediate/nquery/
	TRIGger[:SEQuence]:COUNt
	TRIGger:SEQuence1:COUNt
	TRIGger[:SEQuence]:DELay
	TRIGger:SEQuence1:DELay
	TRIGger[:SEQuence]:HOLDoff
	TRIGger:SEQuence1:HOLDoff
	TRIGger[:SEQuence]:SLOPe
	TRIGger:SEQuence1:SLOPe
	TRIGger:SOURce
	TRIGger[1]:SOURce
	TRIGger[:SEQuence]:SOURce
	TRIGger:SEQuence1:SOURce

	Unit
	UNIT:POWer
	UNIT1:POWer

	Standard SCPI commands
	*CLS/nquery/
	*ESE
	*ESR?/qonly/
	*IDN?/qonly/
	*OPC
	*OPT?/qonly/
	*RCL/nquery/
	*RST/nquery/
	*SAV/nquery/
	*SRE
	*STB?/qonly/
	*TRG/nquery/
	*TST?/qonly/
	*WAI/nquery/

	DCL

